Publications by authors named "Ling X Zhang"

Background: Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a special type of cells called synovial macrophages which help keep joints healthy and can become unhealthy in arthritis.
  • They studied a protein called PRG4 which helps to keep the joints smooth and looked at how it affects these cells and inflammation using special mice that could turn off the PRG4 gene.
  • Results showed that when PRG4 was turned off, it caused more inflammation and problems in the joints, but using a medicine called febuxostat helped reduce these issues and keep the healthy cells alive.
View Article and Find Full Text PDF

Irisin is considered to be a promising therapeutic approach for cardiac depression and inflammatory disorders. The short half-life of irisin impeded its use and drug efficacy in the treatment. This study aimed to examine if pegylated gold nanoparticles-conjugated to irisin would improve therapeutic effects in cecal ligation and puncture (CLP)-induced sepsis in mice.

View Article and Find Full Text PDF

Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear.

View Article and Find Full Text PDF

Introduction: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvβ5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvβ5 is required for irisin's function in modulating the physiologic response to hemorrhage.

View Article and Find Full Text PDF

Proteoglycan 4 (PRG4, lubricin) is a mucin-like glycoprotein present on the ocular surface that has both boundary lubricating and anti-inflammatory properties. Full-length recombinant human PRG4 (rhPRG4) has been shown to be clinically effective in improving signs and symptoms of dry eye disease (DED). In vitro, rhPRG4 has been shown to reduce inflammation-induced cytokine production and NFκB activity in corneal epithelial cells, as well as to bind to and inhibit MMP-9 activity.

View Article and Find Full Text PDF

Irisin, a cleaved product of the fibronectin type III domain containing protein-5, is produced in the muscle tissue, which plays an important role in modulating insulin resistance. However, it remains unknown if irisin provides a protective effect against the detrimental outcomes of hemorrhage. Hemorrhages were simulated in male CD-1 mice to achieve a mean arterial blood pressure of 35-45 mmHg, followed by resuscitation.

View Article and Find Full Text PDF

Camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome leads to diarthrodial joint arthropathy and is caused by the absence of lubricin (proteoglycan 4-PRG4), a surface-active mucinous glycoprotein responsible for lubricating articular cartilage. In this study, mice lacking the orthologous gene served as a model that recapitulates the destructive arthrosis that involves biofouling of cartilage by serum proteins in lieu of Prg4. This study hypothesized that Prg4-deficient mice would demonstrate a quadruped gait change and decreased markers of mitochondrial dyscrasia, following intra-articular injection of both hindlimbs with recombinant human PRG4 (rhPRG4).

View Article and Find Full Text PDF

Background: Synovial macrophages perform a multitude of functions that include clearance of cell debris and foreign bodies, tissue immune surveillance, and resolution of inflammation. The functional diversity of macrophages is enabled by distinct subpopulations that express unique surface markers. Proteoglycan-4 (PRG4) is an important regulator of synovial hyperplasia and fibrotic remodeling, and the involvement of macrophages in PRG4's synovial role is yet to be defined.

View Article and Find Full Text PDF

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD).

View Article and Find Full Text PDF

Background: Synovial tissue fibrosis is common in advanced OA with features including the presence of stress fiber-positive myofibroblasts and deposition of cross-linked collagen type-I. Proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and is a major component of synovial fluid. PRG4 is a ligand of the CD44 receptor.

View Article and Find Full Text PDF

p38-Regulated/activated protein kinase (PRAK) plays a critical role in modulating cellular survival and biological function. However, the function of PRAK in the regulation of myocardial ischemic injury remains unknown. This study is aimed at determining the function of PRAK in modulating myocardial ischemia-reperfusion injury and myocardial remodeling following myocardial infarction.

View Article and Find Full Text PDF

Shiga-toxin producing (STEC) causes human illness ranging from mild diarrhea to death. The bacteriophage encoded genes are located in the late transcription region, downstream of the antiterminator Q. The transcription of the genes is directly under the control of the late promoter R', thus the sequence diversity of the region between and , here termed the pR' region, may affect Stx toxin production.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) play a critical role in modulating cardiac function and ischemic injury. HDAC4 was found to be elevated and activated in response to injury. However, whether HDAC4 mediates cardiac function is currently unknown.

View Article and Find Full Text PDF

Irisin, a newly identified hormone and cardiokine, is critical for modulating body metabolism. New evidence indicates that irisin protects the heart against myocardial ischemic injury. However, whether irisin enhances cardiac progenitor cell (CPC)-induced cardiac repair remains unknown.

View Article and Find Full Text PDF

Background: Gout is an inflammatory arthritis caused by monosodium urate monohydrate (MSU) crystals' joint deposition. MSU phagocytosis by resident macrophages is a key step in gout pathogenesis. MSU phagocytosis triggers nuclear factor kappa B (NFκB) activation and production of cytokines and chemokines.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by synovitis and synovial fibrosis. Synoviocytes are fibroblast-like resident cells of the synovium that are activated by transforming growth factor (TGF)-β to proliferate, migrate, and produce extracellular matrix. Synoviocytes secrete hyaluronan (HA) and proteoglycan-4 (PRG4).

View Article and Find Full Text PDF

Deficiency of PRG4 (lubricin), the boundary lubricant in mammalian joints, contributes to increased joint friction accompanied by superficial and upper intermediate zone chondrocyte caspase-3 activation, as shown in lubricinnull (4) mice. Caspase-3 activity appears to be reversible upon the restitution of either endogenously in vivo, in a gene trap mouse, or as an applied lubricant in vitro. In this study we show that intra-articular injection of human PRG4 in vivo in 4 mice prevented caspase-3 activation in superficial zone chondrocytes and was associated with a modest decrease in whole joint friction measured ex vivo using a joint pendulum method.

View Article and Find Full Text PDF

Background: Lubricin, or proteoglycan 4 (PRG4), is a glycoprotein responsible for joint boundary lubrication. PRG4 has been shown previously to be down-regulated after traumatic joint injury such as a meniscal tear. Preliminary evidence suggests that intra-articular injection of PRG4 after injury will reduce cartilage damage in rat models of surgically induced posttraumatic osteoarthritis.

View Article and Find Full Text PDF

Background: Lubricin/proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and superficial zone chondrocytes. PRG4 has a homeostatic multifaceted role in the joint. PRG4 intra-articular treatment retards progression of cartilage degeneration in pre-clinical posttraumatic osteoarthritis models.

View Article and Find Full Text PDF

Objective: Congenital deficiency of the principal boundary lubricant in cartilage (i.e., lubricin, encoded by the gene PRG4) increases joint friction and causes progressive joint failure.

View Article and Find Full Text PDF

Objective: To evaluate the binding of recombinant human proteoglycan 4 (rhPRG4) to CD44 receptor and its consequences on cytokine-induced synoviocyte proliferation.

Methods: The binding of rhPRG4 to CD44 and competition with high molecular weight (HMW) hyaluronic acid (HA) was evaluated using a direct enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance. Sialidase A and O-glycosidase digestion of rhPRG4 was performed, and CD44 binding was evaluated using ELISA.

View Article and Find Full Text PDF

Lubricin, encoded by the gene PRG4, is the principal lubricant in articulating joints. We immunized mice genetically deficient for lubricin (Prg4-/-) with purified human lubricin, and generated several mAbs. We determined each mAb's binding epitope, sensitivity, and specificity using biologic samples and recombinant lubricin sub-domains, and we also developed a competition ELISA assay to measure lubricin in synovial fluid and blood.

View Article and Find Full Text PDF

Background: Lubricin, a mucinous glycoprotein secreted by synoviocytes and chondrocytes plays an important role in reducing the coefficient of friction in mammalian joints. Elevated cartilage surface friction is thought to cause chondrocyte loss; however, its quantification and methodological approaches have not been reported. We adapted a stereological method and incorporated vital cell staining to assess cellular loss in superficial and upper intermediate zones in lubricin deficient mouse cartilage.

View Article and Find Full Text PDF