Microalgae are recognized as a sustainable resource to produce biofertilizers, biofuels, and pigments, with the added benefits of environmental sustainability, such as carbon sequestration and pollutant removal. However, traditional cultivation methods face challenges like low biomass productivity and high operational costs. This review focuses on the innovative use of hydrogels as a medium for microalgae cultivation, which addresses these challenges by enhancing nutrient permeability, light distribution, and overall growth efficiency.
View Article and Find Full Text PDFHeavy metal contamination of water sources has long been a silent yet potent threat, endangering environmental and human health. Conventional wastewater treatments are costly due to high infrastructure expenses, energy consumption, and chemical usage. These treatments lead to secondary environmental pollution, such as producing toxic sludge, greenhouse gaseous emissions, and residual pollutants discharges.
View Article and Find Full Text PDFBiofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient.
View Article and Find Full Text PDFAcetylation of glycerol to yield monoacetin (MAT), diacetin (DAT), and triacetin (TAT) over NiO-supported CeO (NiO/CeO) catalysts is reported. The catalysts were synthesized utilizing a sol-gel technique, whereby different quantities of NiO ( = 9, 27, and 45 wt%) were supported onto the CeO substrate, and hexadecyltrimethylammonium bromide (CTABr) served as a porogen. The utilization of EDX elemental mapping analysis confirmed the existence of evenly distributed Ni ion and octahedral NiO nanoparticles on the CeO surface through the DRS UV-Vis spectroscopy.
View Article and Find Full Text PDFSurfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry).
View Article and Find Full Text PDFThe demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity.
View Article and Find Full Text PDFWith the rapid development of the economy and productivity, an increasing number of citizens are not only concerned about the nutritional value of algae as a potential new food resource but are also, in particular, paying more attention to the safety of its consumption. Many studies and reports pointed out that analyzing and solving seaweed food safety issues requires holistic and systematic consideration. The three main factors that have been found to affect the food safety of algal are physical, chemical, and microbiological hazards.
View Article and Find Full Text PDFBackground: Cancer disease is a growing health problem in developing and developed countries. Hypoxia-inducible factor-1a (HIF1α) is a transcription factor responsible for expressing several proteins involved in angiogenesis. Quercetin can suppress HIF1α expression due to the inhibition of protein synthesis.
View Article and Find Full Text PDFAlgal green energy has emerged as an alternative to conventional energy production using fossil fuels. Microbial fuel cells (MFCs), photosynthetic microbial fuel cells (PMFCs) and biophotovoltaic (BPV) platforms have been developed to utilize microalgae for bioelectricity generation, wastewater treatment and biomass production. There remains a lack of research on marine microalgae in these systems, so to the best of our knowledge, all information on their integration in these systems have been gathered in this review, and are used to compare with the interesting studies on freshwater microalgae.
View Article and Find Full Text PDFAt temperatures below the critical temperature, discontinuities in the isotherms are one critical issue in the design and construction of separation units, affecting the level of confidence for a prediction of vapor-liquid equilibriums and phase transitions. In this work, we study the molecular mechanisms of fluids that involve the vapor-liquid phase transition in bulk and confinement, utilizing grand canonical (GCE) and meso-canonical (MCE) ensembles of the Monte Carlo simulation. Different geometries of the mesopores, including slit, cylindrical, and spherical, were studied.
View Article and Find Full Text PDFIn recent years, researchers have proven that the employment of natural green components in the biogenesis of nanoparticles from microalgae species is one of the ways to delight the global environment issues. The application of nanotechnology with the exploitation of phycochemical produced from algae species is known as 'phyconanotechnology'. The use of biological compounds by microalgae as reducing agents for the synthesis of inorganic nanoparticles has shown promising results such as cost-effective and environmentally friendly.
View Article and Find Full Text PDFMicroalgae is an autotrophic organism with fast growth, short reproduction cycle, and strong environmental adaptability. In recent years, microalgae and the bioactive ingredients extracted from microalgae are regarded as potential substitutes for raw materials in the pharmaceutical and the cosmetics industry. In this review, the characteristics and efficacy of the high-value components of microalgae are discussed in detail, along with the sources and extraction technologies of algae used to obtain high-value ingredients are reviewed.
View Article and Find Full Text PDFThe litter of persistent organic pollutants (POPs) into the water streams and soil bodies via industrial effluents led to several adverse effects on the environment, health, and ecosystem. For the past decades, scientists have been paying efforts in the innovation and development of POPs removal from wastewater treatment. However, the conventional methods used for the removal of POPs from wastewater are costly and could lead to secondary pollution including soil and water bodies pollution.
View Article and Find Full Text PDFOffretite zeolite synthesis in the presence of cetyltrimethylammonium bromide (CTABr) is reported. The offretite crystals were synthesized with a high crystallinity and hexagonal prismatic shape after only 72 h of hydrothermal treatment at 180 °C. The CTABr has dual-functions during the crystallization of offretite, viz.
View Article and Find Full Text PDFThis study aims to investigate the adsorption behavior of cationic and anionic dyes of methylene blue (MB) and Congo red (CR) onto wet-torrefied Chlorella sp. microalgal biochar respectively, as an approach to generate a waste-derived and low-cost adsorbent. The wet-torrefied microalgal biochar possessed microporous properties with pore diameter less than 2 nm.
View Article and Find Full Text PDFAntibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely.
View Article and Find Full Text PDFRecent trend to recover value-added products from wastewater calls for more effective pre-treatment technology. Conventional landfill leachate treatment is often complex and thus causes negative environmental impacts and financial burden. In order to facilitate downstream processing of leachate wastewater for production of energy or value-added products, it is pertinent to maximize leachate treatment performance by using simple yet effective technology that removes pollutants with minimum chemical added into the wastewater that could potentially affect downstream processing.
View Article and Find Full Text PDFNickel-based catalysts play an important role in the hydrogen-free deoxygenation for the production of biofuel. The yield and quality of the biofuel are critically affected by the physicochemical properties of NiO supported on nanosized zeolite Y (Y65, crystal size of 65 nm). Therefore, 10 wt% NiO supported on Y65 synthesized by using impregnation (IM) and deposition-precipitation (DP) methods were investigated.
View Article and Find Full Text PDFSustainable wastewater treatment necessitates the application of natural and green material in the approach. Thus, selecting a natural coagulant in leachate treatment is a crucial step in landfill operation to prevent secondary environmental pollution due to residual inorganic coagulant in treated effluent. Current study investigated the application of guar gum in landfill leachate treatment.
View Article and Find Full Text PDFMicroalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield.
View Article and Find Full Text PDFPretreatment of microalgal biomass possessing rigid cell wall is a critical step for enhancing the efficiency of microalgal biorefinery. However, the conventional pretreatment processes suffer the drawbacks of complex processing steps, long processing time, low conversion efficiency and high processing costs. This significantly hinders the industrial applicability of microalgal biorefinery.
View Article and Find Full Text PDFMicroalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex.
View Article and Find Full Text PDFBackground: The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution.
View Article and Find Full Text PDFBackground: Microalgae are one of the promising feedstock that consists of high carbohydrate content which can be converted into bioethanol. Pre-treatment is one of the critical steps required to release fermentable sugars to be used in the microbial fermentation process. In this study, the reducing sugar concentration of species was investigated by pre-treating the biomass with dilute sulfuric acid and acetic acid at different concentrations 1%, 3%, 5%, 7%, and 9% (v/v).
View Article and Find Full Text PDFThis work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H.
View Article and Find Full Text PDF