Human leukocyte antigen (HLA) disparity between donors and recipients is a key determinant triggering intense alloreactivity, leading to a lethal complication, namely, acute graft-versus-host disease (aGVHD), after allogeneic transplantation. Moreover, aGVHD remains a cause of mortality after HLA-matched allogeneic transplantation. Protocols for HLA-haploidentical hematopoietic cell transplantation (haploHCT) have been established successfully and widely applied, further highlighting the urgency of performing panoramic screening of non-HLA variations correlated with aGVHD.
View Article and Find Full Text PDFPurpose: Cigarette smoke (CS) has been demonstrated to mediate oxidative stress (OS) and epithelial-mesenchymal transition (EMT) in bronchial epithelial cells, thereby contributing to airway remodeling in chronic obstructive pulmonary disease (COPD). Studies have shown upregulation of Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, in the airway epithelium of smokers. Many studies indicate that UCHL1's regulation of EMT and OS has a complex role in various cell types, including respiratory epithelium.
View Article and Find Full Text PDFHigh temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs.
View Article and Find Full Text PDFUtilizing photocatalytic technology for the value-added conversion of biomass derivatives, alongside the production of clean hydrogen energy, represents a viable approach to addressing energy and environmental challenges. However, the design of cost-effective and efficient photocatalysts remains a significant obstacle. In this work, we employed open-framework Prussian blue analogs as co-catalytic centers and combined them with ZnInS to construct a series of core-shell nanocube photocatalysts with varying metal compositions.
View Article and Find Full Text PDFLithium (Li) metal batteries (LMBs) have garnered widespread attention due to their high specific capacity. However, the growth of lithium dendrite severely limits their practical applications. Herein, a novel strategy is proposed to regulate the overall potential strength and lithium ions (Li) concentration on the surface of the current collector by utilizing densely distributed tip effects.
View Article and Find Full Text PDFThe subcortical maternal complex (SCMC) is essential for safeguarding female fertility in mammals. Assembled in oocytes, the SCMC maintains the cleavage of early embryos, but the underlying mechanism remains unclear. Here, we report that 14-3-3, a multifunctional protein, is a component of the SCMC.
View Article and Find Full Text PDFA single semiconductor-based photoelectrochemical (PEC) aptasensor usually faces a challenge of low sensitivity due to poor solar energy utilization and a high photogenerated carrier recombination rate. Herein, an ultra-thin carbon nitride nanosheet-coated InO (InO/CNS) S-type heterojunction-based PEC aptasensor has been established to achieve highly sensitive detection of diazinon (DZN) pesticide in water environment. Construction of S-type heterojunction induces a band shift and an electric field effect, enhancing light utilization and accelerating directional transmission of carriers, leading to outstanding PEC performance.
View Article and Find Full Text PDFA photoelectrochemical (PEC) aptasensor us reported based on W-doped carbon nitride with carbon-rich structure (WCCN). WCCN exhibited excellent photoelectric conversion performance owing to the carbon-rich structure and W doping. C atoms can replace the center N/edge N atoms to form a carbon-rich structure, improving the insufficient light absorption of CN in the visible region.
View Article and Find Full Text PDFCobalt (Co)-free lithium (Li)-rich layered oxides (LLOs) have emerged as promising cathode materials for the next generation of Li-ion batteries, attributed to their competitive market positioning and high energy density. Nevertheless, challenges arise from surface oxygen loss due to irreversible anionic redox reactions, leading to severe voltage and capacity decay that hinder the large-scale adoption of LLOs. Herein, we present an innovative, facile, and environmentally friendly hydrothermal approach to induce surface reconstruction of LiMnNiO material.
View Article and Find Full Text PDFCalcium-dependent protein kinases (CDPKs) act as key signal transduction enzymes in plants, especially in response to diverse stresses, including herbivory. In this study, a comprehensive analysis of the CDPK gene family in upland cotton revealed that GhCPKs are widely expressed in multiple cotton tissues and respond positively to various biotic and abiotic stresses. We developed a strategy for screening insect-resistance genes from a CRISPR-Cas9 mutant library of GhCPKs.
View Article and Find Full Text PDFThe cycling lifespan of Li-metal batteries is compromised by the unstable solid electrolyte interphase (SEI) and the continuous Li dendrites, restricting their practical implementations. Given these challenges, establishing an artificial SEI holds promise. Herein, a trinitarian gradient interphase is innovatively designed through composite coatings of magnesium fluoride (MgF), N-hexadecyltrimethylammonium chloride (CTAC), and polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP) on Li-metal anode (LMA).
View Article and Find Full Text PDFBackground: Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown.
View Article and Find Full Text PDFDeveloping advanced electrolytes has been regarded as a pivotal strategy for enhancing the electrochemical performance of batteries; however, the criteria for electrolyte design remain elusive. In this study, we present an electrolyte design chart reframed through intermolecular interactions. By combining systematic nuclear magnetic resonance, Fourier transform infrared measurements, molecular dynamics (MD) simulations, and machine-learning-assisted classifications, we establish semiquantitative correlations between electrolyte components and the electrochemical reversibility of electrolytes.
View Article and Find Full Text PDFBackground: Ischemic stroke (IS) is a neurological disease with significant disability and mortality. MicroRNAs were proven to be associated with cerebral ischemia. Previous studies have demonstrated miR-122 downregulation in both animal models of IS and the blood of IS patients.
View Article and Find Full Text PDFNovel binder designs are shown to be fruitful in improving the electrochemical performance of silicon (Si)-based anodes. However, issues with mechanical damage from dramatic volume change and poor lithium-ion (Li) diffusion kinetics in Si-based materials still need to be addressed. Herein, an aqueous self-repairing borate-type binder (SBG) with a web-like architecture and high ionic conductivity is designed for Si and SiO electrodes.
View Article and Find Full Text PDFViral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication.
View Article and Find Full Text PDFDue to the complex series of elementary steps involved, achieving deep photoreduction of CO to multielectron products such as CH remains a challenging task. Therefore, it is crucial to strategically design catalysts that facilitate the controlled formation of the crucial intermediates and provide precise control over the reaction pathway. Herein, we present a pioneering approach by employing polyhydroxy fullerene (PHF) molecules to modify the surface of Ni(OH), creating stable and effective synergistic sites to enhance the formation of CH from CO under light irradiation.
View Article and Find Full Text PDFCoronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
April 2024
Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety.
View Article and Find Full Text PDFThe Hippo pathway plays crucial roles in governing various biological processes during tumorigenesis and metastasis. Within this pathway, upstream signaling stimuli activate a core kinase cascade, involving MST1/2 and LATS1/2, that subsequently phosphorylates and inhibits the transcriptional co-activators YAP and its paralog TAZ. This inhibition modulates the transcriptional regulation of downstream target genes, impacting cell proliferation, migration, and death.
View Article and Find Full Text PDFSarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease.
View Article and Find Full Text PDFCoronaviruses (CoVs) have continuously posed a threat to human and animal health. However, existing antiviral drugs are still insufficient in overcoming the challenges caused by multiple strains of CoVs. And methods for developing multi-target drugs are limited in terms of exploring drug targets with similar functions or structures.
View Article and Find Full Text PDF