Publications by authors named "Ling Lin Qian"

Objective: Adipose tissue remodeling is a dynamic process that is pathologically expedited in the obese state and is closely related to obesity-associated disease progression. This study aimed to explore the effects of human kallistatin (HKS) on adipose tissue remodeling and obesity-related metabolic disorders in mice fed with a high-fat diet (HFD).

Methods: Adenovirus-mediated HKS cDNA (Ad.

View Article and Find Full Text PDF

High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus.

View Article and Find Full Text PDF

Ferroptosis plays an important role in ischemia-reperfusion (I/R)-induced cardiac injury and there are many defects in current targeted delivery of miRNAs for the treatment of ferroptosis. We herein report a unique hydrogel (Gel) that can be triggered by a near-infrared-II (NIR-II) light with deep tissue penetration and biocompatible maximum permissible exposure (MPE) value for in situ treatment after I/R. The mir-196c-3p mimic (mimics) and photothermal nanoparticles (BTN) were co-encapsulated in an injectable Gel (mimics + Gel/BTN) with NIR-II light-triggered release.

View Article and Find Full Text PDF

Background: Fibrotic remodeling is an essential aspect of heart failure. Human kallistatin (KS, mouse Serpina3c homologs) inhibits fibrosis after myocardial infarction (MI) but the specific underlying mechanism is unknown.

Methods: A total of 40 heart failure patients (HFPs) were enrolled and their plasma KS was measured using ELISA.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a public health challenge and an increasing cause of chronic liver disease worldwide. However, the underlying molecular mechanism remains unclear. The aim of this study was to determine the precise role of serpina3c in the process of NAFLD.

View Article and Find Full Text PDF

Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms.

View Article and Find Full Text PDF

Background: Serpina3 is a member of the serine protease inhibitor family and is involved in the inflammatory response. In this study, we investigated the effect of Serpina3c on pancreatic function in hypercholesterolemic mice.

Methods: To investigate the role of Serpina3c in hyperlipidaemia, Serpina3c knockout mice were bred with Apoe-knockout mice (on a C57BL/6 background) to generate heterozygous Serpina3c-Apoe double knockout (Serpina3c/Apoe) mice and were then bred to obtain homozygotes.

View Article and Find Full Text PDF