Publications by authors named "Ling'an Kong"

Plant parasitic nematodes (PPNs) cause an important class of diseases that occur in almost all types of crops, seriously affecting yield and quality and causing great economic losses. Accurate and rapid diagnosis of nematodes is the basis for their control. PPNs often have interspecific overlays and large intraspecific variations in morphology, therefore identification is difficult based on morphological characters alone.

View Article and Find Full Text PDF

There is little information about nematode pests associated with yam in China. Between 2020 and 2021, surveys of yam fields were conducted to investigate the abundance and prevalence of plant-parasitic nematodes in major yam growing areas. A total of 110 bulk soil samples from the yam rhizosphere and 48 yam tubers were collected from seven counties in Jiangxi and Shandong provinces.

View Article and Find Full Text PDF

Lysine 2-hydroxyisobutyrylation (Khib) is a novel naturally occurring post-translational modification. The system Khib identification at proteomics level has been performed in various species and tissues to characterize the role of Khib in biological activities. However, the study of Khib in plant species is relatively less.

View Article and Find Full Text PDF

Background: Abscisic acid-, stress-, and ripening-induced (ASR) genes are a class of plant specific transcription factors (TFs), which play important roles in plant development, growth and abiotic stress responses. The wheat ASRs have not been described in genome-wide yet.

Methods: We predicted the transmembrane regions and subcellular localization using the TMHMM server, and Plant-mPLoc server and CELLO v2.

View Article and Find Full Text PDF

Background: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal activity of Aspergillus welwitschiae have been investigated in vitro, and the disease control efficacy of the active compound has been evaluated under greenhouse and field conditions.

Results: The active compound αβ-dehydrocurvularin (αβ-DC), isolated by nematicidal assay-directed fractionation, showed significant nematicidal activity against M.

View Article and Find Full Text PDF

Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN.

View Article and Find Full Text PDF

Heterodera glycines is the most pervasive soybean pests worldwide. Biocontrol provides a strategy to sustainably control nematodes. In this study, 22 fungal isolates were obtained and identified from cysts of Heterodera spp.

View Article and Find Full Text PDF

Because of the fast expansion of artificial intelligence, development and applications of neuromorphic systems attract extensive interest. In this paper, a highly interconnected neuromorphic architecture (HINA) based on flexible self-supported multiterminal organic transistors is proposed. Au electrodes, poly(3-hexylthiophene) active channels, and ion-conducting membranes were combined to fabricate organic neuromorphic devices.

View Article and Find Full Text PDF

Background: Silicon (Si) can confer plant resistance to both abiotic and biotic stress. In the present study, the priming effect of Si on rice (Oryza sativa cv Nipponbare) against the root-knot nematode Meloidogyne graminicola and its histochemical and molecular impact on plant defense mechanisms were evaluated.

Results: Si amendment significantly reduced nematodes in rice roots and delayed their development, while no obvious negative effect on giant cells was observed.

View Article and Find Full Text PDF

Cereal cyst nematodes (Heterodera avenae and H. filipjevi) and root lesion nematodes (Pratylenchus spp.) have been found to infect cereals in 16 provinces of China.

View Article and Find Full Text PDF

The root-knot nematode Meloidogyne incognita causes severe damage to continuously cropping vegetables. The control of this nematode relies heavily on organophosphate nematicides in China. Here, we described resistance to the organophosphate nematicide fosthiazate in a greenhouse-collected resistant population (RP) and a laboratory susceptible population (SP) of M.

View Article and Find Full Text PDF

Realization of biological synapses using electronic devices is regarded as the basic building blocks for neuromorphic engineering and artificial neural network. With the advantages of biocompatibility, low cost, flexibility, and compatible with printing and roll-to-roll processes, the artificial synapse based on organic transistor is of great interest. In this paper, the artificial synapse simulation by ion-gel gated organic field-effect transistors (FETs) with poly(3-hexylthiophene) (P3HT) active channel is demonstrated.

View Article and Find Full Text PDF

Background: Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding.

View Article and Find Full Text PDF

Alternative splicing (AS) is common in higher eukaryotes and plays an important role in gene posttranscriptional regulation. It has been suggested that AS varies dramatically among species, tissues, and duplicated gene families of different sizes. However, the genomic forces that govern AS variation remain poorly understood.

View Article and Find Full Text PDF

The root-knot nematode (RKN) is one of the most damaging agricultural pests.Effective biological control is need for controlling this destructive pathogen in organic farming system. During October 2010 to 2011, the nematicidal effects of the Syncephalastrum racemosum fungus and the nematicide, avermectin, alone or combined were tested against the RKN (Meloidogyne incognita) on cucumber under pot and field condition in China.

View Article and Find Full Text PDF

Polyploidy is a common phenomenon, particularly in plants. The soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response.

View Article and Find Full Text PDF

Melanized appressoria are highly specialized infection structures formed by germ tubes of the rice blast fungus Magnaporthe oryzae for plant infection. M. oryzae also forms appressorium-like structures on hyphal tips.

View Article and Find Full Text PDF

Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae.

View Article and Find Full Text PDF

Proteomics, the global analysis of proteins, will contribute greatly to our understanding of gene function in the post-genomic era. This review summarizes recent developments in fungal proteomics and also generalizes protocols for sample preparation from plant pathogenic fungi. Challenges and future perspectives of proteomics are discussed as well.

View Article and Find Full Text PDF