Angew Chem Int Ed Engl
February 2025
Proton conducting materials play a key role in various fields, and their proton conduction is profoundly restricted by the proton dissociation process. This process has two components: dissociation from acidic groups (e.g.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
is a cadmium (Cd) and zinc (Zn) accumulator with potential for phytoextraction of soil contaminated with heavy metals. However, how Zn affects Cd accumulation in remains unclear. In this study, seedlings were treated with 100 μmol·L Zn (Zn100), 100 μmol·L Cd (Cd100), and the Zn and Cd combination (Zn100+Cd100) for 10 days under hydroponic culture.
View Article and Find Full Text PDFBackground & Aims: The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear.
Methods: Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilized to study fatty liver protection by T6BP. A P-PTC (peptide-proteolysis targeting chimera) degrades PYK2 to block MASH progression.
Rechargeable aqueous zinc batteries are promising in next-generation sustainable energy storage. However, the low zinc (Zn) metal anode reversibility and utilization in aqueous electrolytes due to Zn corrosion and poor Zn deposition kinetics significantly hinder the development of Zn-ion batteries. Here, a dual salt/dual solvent electrolyte composed of Zn(BF)/Zn(Ac) in water/TEGDME (tetraethylene glycol dimethyl ether) solvents to achieve reversible Zn anode at an ultrahigh depth of discharge (DOD) is developed.
View Article and Find Full Text PDFRosai-Dorfman disease (RDD) is an uncommon histiocytic disorder that occurs in nodal and/or extranodal sites. Extranodal RDD exhibits a wide range of clinical and radiological presentations, frequently leading to misdiagnoses. Involvement of the gastrointestinal (GI) system is uncommon, accounting for less than 1% of the reported cases.
View Article and Find Full Text PDFThe G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the G protein complex, and GDP release.
View Article and Find Full Text PDFOrganic anodes have emerged as a promising energy storage medium in proton ion batteries (PrIBs) due to their ability to reversibly accommodate non-metallic proton ions. Nevertheless, the currently available organic electrodes often encounter dissolution issues, leading to a decrease in long-cycle stability. In addition, the inherent potential of the organic anode is generally relatively high, resulting in low cell voltage of assembled PrIBs (<1.
View Article and Find Full Text PDFThe COVID-19 pandemic has had profound but incompletely understood adverse effects on youth. To elucidate the role of brain circuits in how adolescents responded to the pandemic's stressors, we investigated their prepandemic organization as a predictor of mental/emotional health in the first ~15 months of the pandemic. We analyzed resting-state networks from n = 2,641 adolescents [median age (interquartile range) = 144.
View Article and Find Full Text PDFMany lanthanide complexes do not form gel or even exhibit characteristic luminescence of lanthanide ions, which limits their applications in many fields. Therefore, there is an urgent need for a third component that can not only promote emission but also gel the lanthanide complex system to construct new smart materials such as time-dependent information encryption and anti-counterfeiting materials. Herein, a luminescent lanthanide metallogel was successfully prepared by using the third component sodium carboxymethyl cellulose (NaCMC) to induce the gelation and luminescence of the complex (HL/Tb) of 4,4',4″-((benzene-1,3,5-tricarbonyl)tris(azanediyl)) tris(2-hydroxybenzoic acid) (HL) and Tb.
View Article and Find Full Text PDFAmmonium ion batteries are promising for energy storage with the merits of low cost, inherent security, environmental friendliness, and excellent electrochemical properties. Unfortunately, the lack of anode materials restricts their development. Herein, we utilized density functional theory calculations to explore the VCT MXene as a promising anode with a low working potential.
View Article and Find Full Text PDFNanoconfinement of cations in layered oxide cathode is an important approach to realize advanced zinc ion storage performance. However, thus far, the conventional hydrothermal/solvothermal route for this nanoconfinement has been restricted to its uncontrollable phase structure and the difficulty on the multiple cation co-confinement simultaneously. Herein, this work reports a general, supramolecular self-assembly of ultrathin VO nanosheets using various unitary cations including Na, K, Mg, Ca, Zn, Al, NH , and multiple cations (NH + Na, NH + Na + Ca, NH + Na + Ca +Mg).
View Article and Find Full Text PDFMetabolic, hormonal, autonomic and physiological rhythms may have a significant impact on cerebral hemodynamics and intrinsic brain synchronization measured with fMRI (the resting-state connectome). The impact of their characteristic time scales (hourly, circadian, seasonal), and consequently scan timing effects, on brain topology in inherently heterogeneous developing connectomes remains elusive. In a cohort of 4102 early adolescents with resting-state fMRI (median age = 120.
View Article and Find Full Text PDFCurrently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression.
View Article and Find Full Text PDFIn this work, a novel composite of bacterial cellulose (BC) and expanded vermiculite (EVMT) composite was used to adsorb dyes and antibiotics. The pure BC and BC/EVMT composite were characterized using SEM, FTIR, XRD, XPS and TGA. The BC/EVMT composite exhibited a microporous structure, providing abundant adsorption sites for target pollutants.
View Article and Find Full Text PDFThe non-metal NH carrier has attracted tremendous interests for aqueous energy storage owing to its light molar mass and fast diffusion in aqueous electrolytes. Previous study inferred that NH ion storage in layered VOPO ⋅2 H O is impossible due to the removal of NH from NH VOPO leads to a phase change inevitably. Herein, we update this cognition and demonstrated highly reversible intercalation/de-intercalation behavior of NH in layered VOPO ⋅2 H O host.
View Article and Find Full Text PDFNowadays potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) have failed to achieve expected therapeutic efficacy because the pathogenic mechanisms are underestimated. Inactive rhomboid protein 2 (IRHOM2), a promising target for treatment of inflammation-related diseases, contributes to deregulated hepatocyte metabolism-associated nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanism underlying Irhom2 regulation is still not completely understood.
View Article and Find Full Text PDFBecause of the combined merits of rich physicochemical properties, abundance, low toxicity, , hematite (α-FeO), one of the most chemically stable compounds based on the transition metal element iron, is endowed with multifunctionalities and has steadily been a research hotspot for decades. Very recently, advanced α-FeO materials have also been developed for applications in some cutting-edge fields. To reflect this trend, the latest progress in developing α-FeO materials for newly emerging applications is reviewed with a particular focus on the relationship between composition/nanostructure-induced electronic structure modulation and practical performance.
View Article and Find Full Text PDFAIMS Microbiol
December 2022
The COVID-19 pandemic has caused a worldwide health crisis and economic recession. Effective prevention and treatment methods are urgently required to control the pandemic. However, the emergence of novel SARS-CoV-2 variants challenges the effectiveness of currently available vaccines and therapeutic antibodies.
View Article and Find Full Text PDFA novel poly(phenazine-alt-pyromellitic anhydride) (PPPA) has been successfully designed and synthesized via a condensation polymerization strategy as promising cathode material in organic zinc-ion batteries. Electrochemical quartz crystal microbalance (EQCM), FTIR and XPS characterizations verify a reversible Zn -coordination mechanism in our PPPA cathode. Intriguingly, an ultrahigh Zn diffusion coefficient of 1.
View Article and Find Full Text PDF