Publications by authors named "Linfang Cheng"

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9.

View Article and Find Full Text PDF

Abnormal oxidative stress caused by human immunodeficiency virus (HIV) infection affects viral replication and causes non-acquired immune deficiency syndrome-related complications in infected individuals. The transcription factor NFE2-related factor 2 (NRF2), a key regulator of oxidative stress, responds to abnormal oxidative stress by regulating the expression of NRF2-dependent cytoprotective genes. The present study aimed to determine whether inhibition of oxidative stress could control HIV replication and improve cell survival.

View Article and Find Full Text PDF

The influenza A (H1N1) pdm09 virus attracted public attention because of its high prevalence. The annual global morbidity and mortality rates of influenza remain high despite the application of influenza vaccines and antiviral drugs, which indicates the urgent need to identify a more effective strategy for controlling and treating A(H1N1) pdm09 influenza infection. To produce a highly effective therapeutic with broad specificity for A(H1N1) pdm09 influenza viruses, we generated 15 murine monoclonal antibodies (mAbs) via hybridoma technology: 11 mAbs demonstrated 20-100% therapeutic protection in a mouse model of A(H1N1) pdm09 infection at a single dose of 10 mg/kg.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic caused extensive loss of life worldwide. Further, the COVID-19 and influenza mix-infection had caused great distress to the diagnosis of the disease. To control illness progression and limit viral spread within the population, a real-time reverse-transcription PCR (RT-PCR) assay for early diagnosis of COVID-19 was developed, but detection was time-consuming (4-6 h).

View Article and Find Full Text PDF

• A comprehensive evaluation method for anti-SARS-CoV-2 drugs was established based on qPCR, TCID, and immunofluorescence. • A significant antiviral effect of rHuIFN-α1b was shown in Vero and Calu-3 ​cells. • rHuIFN-α1b has a good potential in the application of anti-COVID-19 therapy.

View Article and Find Full Text PDF

Seasonal influenza viruses are highly contagious, leading to 290,000-650,000 mortalities every year globally. Among the influenza viruses, influenza A virus (H3N2) has attracted much attention due to its high frequency of antigenic variations, resulting in poor protection by vaccination. We generated a panel of murine neutralizing monoclonal antibodies (mAbs) against A/Texas/50/2012 (H3N2) and identified the relevant epitopes that potentially influence the antigenicity by selecting mAb-resistant mutants.

View Article and Find Full Text PDF

Influenza virus infections pose a continuous threat to human health. Although vaccines function as a preventive and protective tool, they may not be effective due to antigen drift or an inaccurate prediction of epidemic strains. Monoclonal antibodies (mAbs) have attracted wide attention as a promising therapeutic method for influenza virus infections.

View Article and Find Full Text PDF

Background: The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus.

View Article and Find Full Text PDF

Objectives: The continuous evolution of highly pathogenic H5N6 avian influenza viruses (AIVs) causes outbreaks in wildfowl and poultry, and occasional human infections. The aim of this study was to better understand the genetic relationships between these H5N6 AIVs from eastern China and other AIVs.

Methods: In 2016, 1623 cloacal swabs were sampled from poultry in 18 LPMs in eastern China, and subsequently characterized systematically using gene sequencing, phylogenetic studies, and antigenic analysis.

View Article and Find Full Text PDF

There is a worldwide pandemic of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; yet our understanding remains limited on the characteristic of antibodies, especially for dynamic long-term tracking. Sequential serum samples were collected up to 416 days post onset of symptoms (POS) from 102 patients who were hospitalized with coronavirus disease 2019 (COVID-19). Immunoglobulin (Ig)G, IgM, and IgA levels targeting SARS-CoV-2 spike 1 receptor-binding domain (S1-RBD), spike 2 extracellular domain (S2-ECD), and nucleocapsid protein (N) were quantified as well as neutralizing activity.

View Article and Find Full Text PDF

Avian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold-based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.

View Article and Find Full Text PDF

The COVID-19 pandemic has become a worldwide health crisis. So far, most studies have focused on the epidemiology and pathogenesis of this infectious disease. Little attention has been given to the disease sequelae in patients recovering from COVID-19, and nothing is known about the mechanisms underlying these sequelae.

View Article and Find Full Text PDF

Background: In 2020, a new coronavirus, SARS-CoV-2, quickly spread worldwide within a few months. Although coronaviruses typically infect the upper or lower respiratory tract, the virus RNA can be detected in plasma. The risk of transmitting coronavirus via transfusion of blood products remains.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally with more than 33 million patients diagnosed, taking more than a million lives. Abundant mutations were observed but the functional consequences of these mutations are largely unknown. We report the mutation spectrum, replication dynamics, and infectivity of 11 patient-derived viral isolates in diverse cell lines, including the human lung cancer cell line Calu-3.

View Article and Find Full Text PDF

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model.

View Article and Find Full Text PDF

SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA).

View Article and Find Full Text PDF

The mutations in the SARS-CoV-2 virus genome during COVID-19 dissemination are unclear. In 788 COVID-19 patients from Zhejiang province, we observed decreased rate of severe/critical cases compared with patients in Wuhan. For mechanisms exploration, we isolated one strain of SARS-CoV-2 (ZJ01) from a mild COVID-19 patient.

View Article and Find Full Text PDF

The H7N9 virus mutated in 2017, resulting in new cases of highly pathogenic avian influenza (HPAI) H7N9 virus infection. H7N9 was found in a viraemic patient in Guangdong province, China. The present study aimed to clarify the pathogenic characteristics of HPAI H7N9.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is a correction to an article published in the journal "Frontiers in Microbiology."
  • The specific article is identified by its Digital Object Identifier (DOI): 10.3389/fmicb.2018.02724.
  • The correction may involve updates or clarifications to previously published information in that article.
View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) transcription is closely associated with chromatin remodeling. Retinoblastoma binding protein 4 (RBBP4) is a histone chaperone implicated in chromatin remodeling. However, the role of RBBP4 in HIV-1 infection and the underlying mechanism remain elusive.

View Article and Find Full Text PDF

Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle.

View Article and Find Full Text PDF

In recent years, avian-origin H10 influenza viruses have proved capable of infecting human beings, and they pose a potential public health threat. Seven H10 avian influenza viruses (AIVs), H10N3 (n = 2), H10N7 (n = 1), and H10N8 (n = 4), were isolated from chickens in Zhejiang Province, Eastern China, during surveillance of AIVs in live poultry markets in 2016 and 2017. Phylogenetic analysis indicated that Zhejiang H10 strains received gene segments from H10, H3, and H7 viruses from birds in East Asia.

View Article and Find Full Text PDF

The influenza virus is a serious threat to public health worldwide. A novel avian influenza A (H7N9) virus with a mortality rate of approximately 30% has been identified as an unusually dangerous virus for humans by the World Health Organization. Pathogenic H7N9 continue to represent a public health concern, and several candidate vaccines are currently in development.

View Article and Find Full Text PDF

A novel reassortant H5N8 highly pathogenic avian influenza (HPAI) virus was recently identified in Asia, Europe, and North America. The H5N8 HPAI virus has raised serious concerns regarding the potential risk for human infection. However, the molecular changes responsible for allowing mammalian infection in H5N8 HPAI viruses are not clear.

View Article and Find Full Text PDF