In this commentary, we advance the notion that mutant KRAS (mKRAS) is an ideal tumor neoantigen that is amenable for targeting by the adaptive immune system. Recent progress highlights key advances on various fronts that validate mKRAS as a molecular target and support further pursuit as an immunological target. Because mKRAS is an intracellular membrane localized protein and not normally expressed on the cell surface, we surmise that proteasome degradation will generate short peptides that bind to HLA class I (HLA-I) molecules in the endoplasmic reticulum for transport through the Golgi for display on the cell surface.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled.
View Article and Find Full Text PDFPurpose: Treatments are limited for metastatic melanoma and metastatic triple-negative breast cancer (mTNBC). This pilot phase I trial (NCT03060356) examined the safety and feasibility of intravenous RNA-electroporated chimeric antigen receptor (CAR) T cells targeting the cell-surface antigen cMET.
Experimental Design: Metastatic melanoma or mTNBC subjects had at least 30% tumor expression of cMET, measurable disease and progression on prior therapy.
Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity.
View Article and Find Full Text PDFUnlabelled: We conducted a phase I clinical trial of anti-BCMA chimeric antigen receptor T cells (CART-BCMA) with or without anti-CD19 CAR T cells (huCART19) in multiple myeloma (MM) patients responding to third- or later-line therapy (phase A, N = 10) or high-risk patients responding to first-line therapy (phase B, N = 20), followed by early lenalidomide or pomalidomide maintenance. We observed no high-grade cytokine release syndrome (CRS) and only one instance of low-grade neurologic toxicity. Among 15 subjects with measurable disease, 10 exhibited partial response (PR) or better; among 26 subjects responding to prior therapy, 9 improved their response category and 4 converted to minimal residual disease (MRD)-negative complete response/stringent complete response.
View Article and Find Full Text PDFBackground: Human leukocyte antigen (HLA)-DR, a member of the major histocompatibility complex class II antigen family, is a target for antibody-based therapeutics. Apolizumab (Hu1D10, Remitogen), a humanized IgG1 monoclonal anti-HLA-DR ß-chain antibody targets the antigen, 1D10, expressed on a wide variety of hematologic and solid tumor malignancies. In this Phase 1 trial, the maximum tolerated dose and dose-limiting toxicity of weekly apolizumab in patients with advanced solid tumor malignancies were determined.
View Article and Find Full Text PDFIn the mid 1990's, a convergence of discoveries in dendritic cell (DC) biology and tumor antigen identification led investigators to study DCs as adjuvants for cancer vaccines. On the twentieth anniversary of a seminal clinical study by Jacques Banchereau and colleagues, we revisit the key events that prompted the initial wave of DC vaccine clinical studies and lessons learned that, in our opinion, helped forge the path for the field that we now call immuno-oncology. It is essential to recall that prior to the discovery of immune checkpoint therapy and chimeric antigen receptor (CAR) T-cell therapy, skepticism prevailed regarding the potential therapeutic benefit of immunotherapies.
View Article and Find Full Text PDFPurpose: Autophagy is a resistance mechanism to BRAF/MEK inhibition in BRAFV600-mutant melanoma. Here we used hydroxychloroquine (HCQ) to inhibit autophagy in combination with dabrafenib 150 mg twice daily and trametinib 2 mg every day (D+T).
Patients And Methods: We conducted a phase I/II clinical trial in four centers of HCQ + D+T in patients with advanced BRAFV600-mutant melanoma.
Background: Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer that has a poor prognosis in patients with advanced disease. Avelumab [anti-programmed death-ligand 1 (PD-L1)] became the first approved treatment for patients with metastatic MCC (mMCC), based on efficacy and safety data observed in the JAVELIN Merkel 200 trial. We report long-term overall survival (OS) data after >5 years of follow-up from the cohort of patients with mMCC whose disease had progressed after one or more prior lines of chemotherapy.
View Article and Find Full Text PDFBackground: The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME.
View Article and Find Full Text PDFActivating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes.
View Article and Find Full Text PDFObjectives: With a rapidly growing list of candidate immune-based cancer therapeutics, there is a critical need to generate highly reliable animal models to preclinically evaluate the efficacy of emerging immune-based therapies, facilitating successful clinical translation. Our aim was to design and validate a novel model (called Xenomimetic or 'X' mouse) that allows monitoring of the ability of human tumor-specific T cells to suppress tumor growth following their entry into the tumor.
Methods: Tumor xenografts are established rapidly in the greater omentum of globally immunodeficient NOD- (NSG) mice following an intraperitoneal injection of melanoma target cells expressing tumor neoantigen peptides, as well as green fluorescent protein and/or luciferase.
Background: Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer associated with a high risk of metastasis. In 2017, avelumab (anti-programmed death-ligand 1 (PD-L1)) became the first approved treatment for patients with metastatic MCC (mMCC), based on the occurrence of durable responses in a subset of patients. Here, we report long-term efficacy and safety data and exploratory biomarker analyses in patients with mMCC treated with avelumab.
View Article and Find Full Text PDFThe impact of intratumoral heterogeneity (ITH) and the resultant neoantigen landscape on T cell immunity are poorly understood. ITH is a widely recognized feature of solid tumors and poses distinct challenges related to the development of effective therapeutic strategies, including cancer neoantigen vaccines. Here, we performed deep targeted DNA sequencing of multiple metastases from melanoma patients and observed ubiquitous sharing of clonal and subclonal single nucleotide variants (SNVs) encoding putative HLA class I-restricted neoantigen epitopes.
View Article and Find Full Text PDFPrimary malignant bone tumors are rare, occur in all age groups, and include distinct entities such as osteosarcoma, Ewing sarcoma, and chondrosarcoma. Traditional treatment with some combination of chemotherapy, surgery, and radiation has reached the limit of efficacy, with substantial room for improvement in patient outcome. Furthermore, genomic characterization of these tumors reveals a paucity of actionable molecular targets.
View Article and Find Full Text PDFPurpose Of Review: Checkpoint inhibitors block co-inhibitory signals which serves to promote T cell activation/reinvigoration in the periphery and tumor microenvironment. A brief historical background as well as a summary of key observations related to the composition and prognostic value of tumor-infiltrating lymphocytes (TILs) is discussed.
Recent Findings: Solid tumor patients that respond to checkpoint inhibitors have greater CD8+ T cell densities (at the tumor margin) associated with a gene inflammation signature and high tumor mutational burden.
Immunologic responses to anti-PD-1 therapy in melanoma patients occur rapidly with pharmacodynamic T cell responses detectable in blood by 3 weeks. It is unclear, however, whether these early blood-based observations translate to the tumor microenvironment. We conducted a study of neoadjuvant/adjuvant anti-PD-1 therapy in stage III/IV melanoma.
View Article and Find Full Text PDFBackground: Response rates are primary endpoints in many oncology trials; however, correlation with overall survival (OS) is not uniform across cancer types, treatments, or lines of therapy. This study explored the association between objective response (OR) and OS in patients with chemotherapy-refractory metastatic Merkel cell carcinoma who received avelumab (anti-PD-L1).
Methods: Eighty-eight patients enrolled in JAVELIN Merkel 200 (part A; NCT02155647) received i.
Introduction: We sought to determine which therapeutically targetable immune checkpoints, costimulatory signals, and other tumor microenvironment (TME) factors are independently associated with immune cytolytic activity (CYT), a gene expression signature of activated effector T cells, in human glioblastoma (GBM).
Methods: GlioVis was accessed for RNA-seq data from The Cancer Genome Atlas (TCGA). For subjects with treatment-naïve, primary GBM, we quantified mRNA expression of 28 therapeutically targetable TME factors.
Purpose Uveal melanoma is the most common primary intraocular malignancy in adults with no effective systemic treatment option in the metastatic setting. Selumetinib (AZD6244, ARRY-142886) is an oral, potent, and selective MEK1/2 inhibitor with a short half-life, which demonstrated single-agent activity in patients with metastatic uveal melanoma in a randomized phase II trial. Methods The Selumetinib (AZD6244: ARRY-142886) (Hyd-Sulfate) in Metastatic Uveal Melanoma (SUMIT) study was a phase III, double-blind trial ( ClinicalTrial.
View Article and Find Full Text PDFIn patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T-cell therapy for glioblastoma. In addition, despite formidable barriers to T-cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients.
View Article and Find Full Text PDF