Piwi proteins and Piwi-interacting small RNAs (piRNAs) have known functions in transposon silencing in the male germline of fetal and newborn mice. Both are also present in adult testes; however, their function here remains a mystery. Here, we confirm that most piRNAs in meiotic spermatocytes originate from clusters in non-repeat intergenic regions of DNA.
View Article and Find Full Text PDFAlkB homolog 1 (ALKBH1) is one of nine members of the family of mammalian AlkB homologs. Most Alkbh1(-/-) mice die during embryonic development, and survivors are characterized by defects in tissues originating from the ectodermal lineage. In this study, we show that deletion of Alkbh1 prolonged the expression of pluripotency markers in embryonic stem cells and delayed the induction of genes involved in early differentiation.
View Article and Find Full Text PDFMore than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions.
View Article and Find Full Text PDFBackground: Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.
Methods And Findings: In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice.
Endogenous formation of the mutagenic DNA adduct 1,N(6)-ethenoadenine (epsilon A) originates from lipid peroxidation. Elevated levels of epsilon A in cancer-prone tissues suggest a role for this adduct in the development of some cancers. The base excision repair pathway has been considered the principal repair system for epsilon A lesions until recently, when it was shown that the Escherichia coli AlkB dioxygenase could directly reverse the damage.
View Article and Find Full Text PDFTwo human homologs of the Escherichia coli AlkB protein, denoted hABH2 and hABH3, were recently shown to directly reverse 1-methyladenine (1meA) and 3-methylcytosine (3meC) damages in DNA. We demonstrate that mice lacking functional mABH2 or mABH3 genes, or both, are viable and without overt phenotypes. Neither were histopathological changes observed in the gene-targeted mice.
View Article and Find Full Text PDFDeamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond 3' to the lesion.
View Article and Find Full Text PDF