To elucidate pathways in bladder inflammation, we employed our physiologically relevant LL-37 induced cystitis model. Based on inflammatory studies involving other organ systems implicating the receptor for advanced glycation end-products (RAGE), we first hypothesized that RAGE is critically involved in LL-37 induced cystitis. We further hypothesized a common RAGE ligand - high mobility group box 1 (HMGB1) is up-regulated in bladders challenged with LL-37.
View Article and Find Full Text PDFPurpose: We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells.
Materials And Methods: To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients.