Publications by authors named "Lindsey Rolfe"

Purpose: Pancreatic cancer has a poor prognosis and limited treatment options. Approximately 9% of pancreatic cancers harbor a germline or somatic or () mutation. Because poly (ADP-ribose) polymerase inhibitors have significant activity in -mutant ovarian and breast cancers, RUCAPANC investigated the efficacy and safety of rucaparib in -mutant pancreatic cancer.

View Article and Find Full Text PDF

Objective: An integrated analysis was undertaken to characterize the antitumor activity and safety profile of the oral poly(ADP-ribose) polymerase inhibitor rucaparib in patients with relapsed high-grade ovarian carcinoma (HGOC).

Methods: Eligible patients from Study 10 (NCT01482715) and ARIEL2 (NCT01891344) who received a starting dose of oral rucaparib 600mg twice daily (BID) with or without food were included in these analyses. The integrated efficacy population included patients with HGOC and a deleterious germline or somatic BRCA1 or BRCA2 (BRCA1/2) mutation who received at least two prior chemotherapies and were sensitive, resistant, or refractory to platinum-based chemotherapy.

View Article and Find Full Text PDF

Rucaparib is a potent, oral, small-molecule PARP inhibitor. This phase I-II study was the first to evaluate single-agent oral rucaparib at multiple doses. Part 1 (phase I) sought to determine the MTD, recommended phase II dose (RP2D), and pharmacokinetics of oral rucaparib administered in 21-day continuous cycles in patients with advanced solid tumors.

View Article and Find Full Text PDF

Background: Poly(ADP-ribose) polymerase (PARP) inhibitors have activity in ovarian carcinomas with homologous recombination deficiency. Along with BRCA1 and BRCA2 (BRCA) mutations genomic loss of heterozygosity (LOH) might also represent homologous recombination deficiency. In ARIEL2, we assessed the ability of tumour genomic LOH, quantified with a next-generation sequencing assay, to predict response to rucaparib, an oral PARP inhibitor.

View Article and Find Full Text PDF

Introduction: In approximately 60% of patients with NSCLC who are receiving EGFR tyrosine kinase inhibitors, resistance develops through the acquisition of EGFR T790M mutation. We aimed to demonstrate that a highly sensitive and quantitative next-generation sequencing analysis of EGFR mutations from urine and plasma specimens is feasible.

Methods: Short footprint mutation enrichment next-generation sequencing assays were used to interrogate EGFR activating mutations and the T790M resistance mutation in urine or plasma specimens from patients enrolled in TIGER-X (NCT01526928), a phase 1/2 clinical study of rociletinib in previously treated patients with EGFR mutant-positive advanced NSCLC.

View Article and Find Full Text PDF

Purpose: The evaluation of plasma testing for the EGFR resistance mutation T790M in NSCLC patients has not been broadly explored. We investigated the detection of EGFR activating and T790M mutations in matched tumor tissue and plasma, mostly from patients with acquired resistance to first-generation EGFR inhibitors.

Experimental Design: Samples were obtained from two studies, an observational study and a phase I trial of rociletinib, a mutant-selective inhibitor of EGFR that targets both activating mutations and T790M.

View Article and Find Full Text PDF

Background: Non-small-cell lung cancer (NSCLC) with a mutation in the gene encoding epidermal growth factor receptor (EGFR) is sensitive to approved EGFR inhibitors, but resistance develops, mediated by the T790M EGFR mutation in most cases. Rociletinib (CO-1686) is an EGFR inhibitor active in preclinical models of EGFR-mutated NSCLC with or without T790M.

Methods: In this phase 1-2 study, we administered rociletinib to patients with EGFR-mutated NSCLC who had disease progression during previous treatment with an existing EGFR inhibitor.

View Article and Find Full Text PDF

Purpose: Gemcitabine requires transporter proteins to cross cell membranes. Low expression of human equilibrative nucleoside transporter-1 (hENT1) may result in gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC). CO-101, a lipid-drug conjugate of gemcitabine, was rationally designed to enter cells independently of hENT1.

View Article and Find Full Text PDF