Event-related potentials (ERPs) are small voltage changes in the brain that reliably occur in response to auditory or visual stimuli. ERPs have been extensively studied in both humans and animals to identify biomarkers, test pharmacological agents, and generate testable hypotheses about the physiological and genetic basis of schizophrenia. In this chapter, we discuss how ERPs are generated and recorded as well as review canonical ERP components in the context of schizophrenia research in humans.
View Article and Find Full Text PDFIntroduction: Deep brain stimulation (DBS) has shown remarkable success treating neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, epilepsy, and obsessive-compulsive disorder. DBS is now being explored to improve cognitive and functional outcomes in other psychiatric conditions, such as those characterized by reduced N-methyl-D-aspartate (NMDA) function (i.e.
View Article and Find Full Text PDFThe complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia.
View Article and Find Full Text PDFCognitive deficit remains an intractable symptom of schizophrenia, accounting for substantial disability. Despite this, little is known about the cause of cognitive dysfunction in schizophrenia. Recent studies suggest that schizophrenia patients show several changes in dentate gyrus structure and functional characteristic of immaturity.
View Article and Find Full Text PDFBackground: Few treatments exist for the cognitive symptoms of schizophrenia. Pharmacological agents resulting in glutamate N-methyl-d-aspartate (NMDA) receptor hypofunction, such as MK-801, mimic many of these symptoms and disrupt neural activity. Recent evidence suggests that deep brain stimulation (DBS) of the medial septal nucleus (MSN) can modulate medial prefrontal cortex (mPFC) and hippocampal activity and improve spatial memory.
View Article and Find Full Text PDFBackground: Early life stress may have profound effects on brain health, yielding both short- and long-term cognitive or psychiatric impairment. Early life Social Instability Stress (SIS) in rodents has been used to model the effects of early chronic human stress. While many studies have assessed acute and short-term responses to this stressor, less attention has been paid to the lasting effects of early life stress in rodents.
View Article and Find Full Text PDFHippocampal gamma and theta oscillations are associated with mnemonic and navigational processes and adapt to changes in the behavioral state of an animal to optimize spatial information processing. It has been shown that locomotor activity modulates gamma and theta frequencies in rats, although how age alters this modulation has not been well studied. Here, we examine gamma and theta local-field potential and place cell activity in the hippocampus CA1 region of young and old male rats as they performed a spatial eye-blink conditioning task across 31 d.
View Article and Find Full Text PDFSleep disturbances co-occur with and precede the onset of motor symptoms in Parkinson's disease (PD). We evaluated sleep fragmentation and thalamocortical sleep spindles in mice expressing the p.G2019S mutation of the leucine-rich repeat kinase 2 () gene, one of the most common genetic forms of PD.
View Article and Find Full Text PDFComplex behaviors depend on the coordination of the activities of ensembles of neurons and the release of neuromodulators such as dopamine. The mechanisms underlying such coordination are not well-understood due to a lack of instrumentation for combined and real-time monitoring of neuromodulator release and the activities of large ensembles of neurons. Here we describe a measurement platform that allows for the combined monitoring of electrophysiology from a high-density electrode array and dopamine dynamics from a carbon-fiber microelectrode.
View Article and Find Full Text PDF