DHODH inhibition represents an attractive approach to overcome differentiation blockade for the treatment of AML. In a previous communication, we described our efforts leading to the discovery of compound 3 (JNJ-74856665), an orally bioavailable, potent, and selective DHODH inhibitor for clinical development. Guided by the co-crystal structures bound to human DHODH, other fused six-membered constructs were explored as isosteric replacements of the isoquinolinone central core.
View Article and Find Full Text PDFAcute myelogenous leukemia (AML), a heterogeneous disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway and preclinical findings demonstrated that DHODH is a metabolic vulnerability in AML as inhibitors can induce differentiation across multiple AML subtypes. As a result of virtual screening and structure-based drug design approaches, a novel series of isoquinolinone DHODH inhibitors was identified.
View Article and Find Full Text PDFDihydroorotate dehydrogenase (DHODH) is a mitochondrial enzyme that affects many aspects essential to cell proliferation and survival. Recently, DHODH has been identified as a potential target for acute myeloid leukemia therapy. Herein, we describe the identification of potent DHODH inhibitors through a scaffold hopping approach emanating from a fragment screen followed by structure-based drug design to further improve the overall profile and reveal an unexpected novel binding mode.
View Article and Find Full Text PDFThe protein that forms the inner shell of the HBV virus, known as the capsid core protein, plays a crucial role in allowing chronic HBV infections to persist. Studies have shown that disrupting the assembly of the capsid can effectively combat the virus, and small molecule drugs that target the HBV capsid assembly modulator (CAM) process have been successful in clinical trials. Herein is described a distinct series of di-fluoro azepane CAMs with exceptional potency, pharmacokinetic, and solubility properties.
View Article and Find Full Text PDFAcute myelogenous leukemia (AML), a disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway; however, small molecule DHODH inhibitors were recently shown to induce differentiation in multiple AML subtypes. Using virtual screening and structure-based drug design approaches, a new series of N-heterocyclic 3-pyridyl carboxamide DHODH inhibitors were discovered.
View Article and Find Full Text PDFThe HBV capsid core protein serves a number of important functions in the viral life cycle enabling chronic HBV infection to persist, and therefore is a promising drug target. Interfering with capsid assembly has shown efficacy in clinical trials with small molecule capsid assembly modulators (CAMs). Herein is described the further optimization of a progressive series of diazepinone HBV CAMs.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2020
Dihydroorotate dehydrogenase (DHODH) enzymatic activity impacts many aspects critical to cell proliferation and survival. Recently, DHODH has been identified as a target for acute myeloid differentiation therapy. In preclinical models of AML, the DHODH inhibitor Brequinar (BRQ) demonstrated potent anti-leukemic activity.
View Article and Find Full Text PDFA convergent method for the rapid preparation of substituted isocoumarins is reported. The transformation takes advantage of a spontaneous intramolecular cyclization that follows the Pd-catalyzed α-arylation of aldehydes with 2-halobenzoic esters. The reaction uses an air-stable, single-component palladium catalyst and provides access to 4-alkylated isocoumarins in one step from commercial starting materials.
View Article and Find Full Text PDFA tandem one-pot reaction featuring a cross-coupling followed by an intramolecular oxetane ring opening by mild nucleophiles is reported. The overall transformation comprises a carbon-carbon bond formation along with a carbon-heteroatom bond construction providing diverse multicyclic ring systems with a pendant hydroxymethyl handle for further elaboration. This approach constitutes a convergent method for rapid access to various scaffolds.
View Article and Find Full Text PDFOxetanes have been increasingly used as stable motifs in medicinal chemistry as well as versatile synthetic intermediates. Herein, an intramolecular ring opening of oxetane carboxamides with mild nucleophiles, such as nitrogen heterocycles, is presented. The reaction proceeds under metal-free basic conditions which is highly unusual in ring opening reactions of oxetanes.
View Article and Find Full Text PDFThe first catalytic enantioselective alkynylation of chromones is reported. In this process, chromones are silylated to form silyloxybenzopyrylium ions that lead to silyl enol ethers after Cu-catalyzed alkyne addition using StackPhos as a ligand. The outcome of the reaction is impacted by distal ligand substituents with differing electronic character and it was found that successful reactions could be achieved with different ligand congeners by using different solvents.
View Article and Find Full Text PDFA gold-catalyzed synthesis of cyclic 2-oxodienes from readily prepared propargyl alcohols and the subsequent Diels-Alder reaction are reported. The dehydrative cyclization reactions proceeded smoothly, and the dienes formed in situ were demonstrated to undergo cycloaddition with a variety of dienophiles. This method offers a new strategy for the synthesis of indolocarbazole alkaloids, whereby the convergent synthetic design allows for differentiation between the indole nitrogens.
View Article and Find Full Text PDF