Publications by authors named "Lindsey Friend"

The ventral tegmental area (VTA) in the midbrain is essential in incentive salience of reward behavior. Drugs of abuse increase midbrain dopamine cell activity and/or dopamine levels, and can alter endogenous VTA glutamate plasticity, leading to addiction or dependence. VTA dopamine cells are regulated by local inhibitory GABA cells, which exhibit a form of pre-synaptic cannabinoid receptor 1-dependent long-term depression of their glutamatergic inputs.

View Article and Find Full Text PDF

Changes in synaptic strength between hippocampal CA1 pyramidal cell synapses are partly responsible for memory acquisition. This plasticity is modulated by feedforward inhibitory interneurons in the stratum radiatum. While radiatum interneurons experience either long-term depression (LTD), short-term depression (STD), or lack plasticity, it is unclear whether plasticity correlates to specific interneuron subtypes.

View Article and Find Full Text PDF

The hippocampus is thought to encode information by altering synaptic strength via synaptic plasticity. Some forms of synaptic plasticity are induced by lipid-based endocannabinoid signaling molecules that act on cannabinoid receptors (CB1). Endocannabinoids modulate synaptic plasticity of hippocampal pyramidal cells and stratum radiatum interneurons; however, the role of endocannabinoids in mediating synaptic plasticity of stratum oriens interneurons is unclear.

View Article and Find Full Text PDF

The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells.

View Article and Find Full Text PDF

Dopamine (DA) neuron excitability is regulated by inhibitory GABAergic synaptic transmission and modulated by nicotinic acetylcholine receptors (nAChRs). The aim of this study was to evaluate the role of α6 subunit-containing nAChRs (α6*-nAChRs) in acute ethanol effects on ventral tegmental area (VTA) GABA and DA neurons. α6*-nAChRs were visualized on GABA terminals on VTA GABA neurons, and α6*-nAChR transcripts were expressed in most DA neurons, but only a minority of VTA GABA neurons from GAD67 GFP mice.

View Article and Find Full Text PDF

GPR55, an orphan G-protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While endocannabinoids are well known to modulate brain synaptic plasticity, the potential role LPI could have on brain plasticity has never been demonstrated.

View Article and Find Full Text PDF

The novel nuclear protein nBMP2 is synthesized from the BMP2 gene by translational initiation at an alternative start codon. We generated a targeted mutant mouse, nBmp2NLS, in which the nuclear localization signal (NLS) was inactivated to prevent nuclear translocation of nBMP2 while still allowing the normal synthesis and secretion of the BMP2 growth factor. These mice exhibit abnormal muscle function due to defective Ca transport in skeletal muscle.

View Article and Find Full Text PDF

The ventral tegmental area (VTA) is involved in adaptive reward and motivation processing and is composed of dopamine (DA) and GABA neurons. Defining the elements regulating activity and synaptic plasticity of these cells is critical to understanding mechanisms of reward and addiction. While endocannabinoids (eCBs) that potentially contribute to addiction are known to be involved in synaptic plasticity mechanisms in the VTA, where they are produced is poorly understood.

View Article and Find Full Text PDF