Publications by authors named "Lindsey D Mayo"

Epithelial-like tumor cells can become metastatic by undergoing molecular and phenotypic reprogramming in a process referred to as epithelial-to-mesenchymal transition (EMT). In response to EMT genes that promote migration and condition the tumor microenvironment to permit intravasation into the bloodstream, dissemination and extravasation into new organs are induced. While the mutant p53 has been implicated in extravasation, one negative regulator of p53, the oncogene murine double minute-2 gene (Mdm2), is required in the early stages of metastasis and the driver of EMT.

View Article and Find Full Text PDF

The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair to ensure genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1.

View Article and Find Full Text PDF

The ATR kinase responds to elevated levels of single-stranded DNA (ssDNA) to activate the G2/M checkpoint, regulate origin utilization, preserve fork stability, and allow DNA repair towards ensuring genome integrity. The intrinsic replication stress in cancer cells makes this pathway an attractive therapeutic target. The ssDNA that drives ATR signaling is sensed by the ssDNA-binding protein replication protein A (RPA), which acts as a platform for ATRIP recruitment and subsequent ATR activation by TopBP1.

View Article and Find Full Text PDF

The tumor suppressor von Hippel-Lindau, pVHL, is a multifaceted protein. One function is to dock to the hypoxia-inducible transcription factor (HIF) and recruit a larger protein complex that destabilizes HIF via ubiquitination, preventing angiogenesis and tumor development. pVHL also binds to the tumor suppressor p53 to activate specific p53 target genes.

View Article and Find Full Text PDF

The most common gynecological cancer in Europe and the United States is endometrial. Like most cancers, early-stage endometrial cancer has a more favorable prognosis, while high-grade, including endometrioid and nonendometrioid, has the worst prognosis. In endometrioid human tumors, the tumor suppressor genes PTEN and p53 (Trp53) are frequently altered or lost, as identified in datasets from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Mutations in the tumor suppressor TP53 are rare in renal cell carcinomas. p53 is a key factor for inducing antiangiogenic genes and RCC are highly vascularized, which suggests that p53 is inactive in these tumors. One regulator of p53 is the Mdm2 oncogene, which is correlated with high-grade, metastatic tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Clonal hematopoiesis of indeterminate potential (CHIP) is a condition that gets more common as people age and can lead to blood cancers.
  • Mutations in the TP53 gene can give an advantage to blood stem cells, helping them grow more after stress like radiation.
  • The study found that the mutant p53 protein helps another protein called EZH2 stick to certain genes, boosting their activity and leading to the expansion of these blood stem cells, which could be a target for new treatments.
View Article and Find Full Text PDF

Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that -deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate.

View Article and Find Full Text PDF

Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2 ) results in the development of hematopoietic neoplasms and sarcomas in adult animals.

View Article and Find Full Text PDF

Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage.

View Article and Find Full Text PDF

The transcription factors p53 and p73 are critical to the induction of apoptotic cell death, particularly in response to cell stress that activates c-Jun N-terminal kinase (JNK). Mutations in the DNA-binding domain of p53, which are commonly seen in cancers, result in conformational changes that enable p53 to interact with and inhibit p73, thereby suppressing apoptosis. In contrast, wild-type p53 reportedly does not interact with p73.

View Article and Find Full Text PDF

Mouse double minute 2 (Mdm2) and MdmX dimerize in response to low levels of genotoxic stress to function in a ubiquitinating complex, which signals for destabilization of p53. Under growth conditions, Mdm2 functions as a neddylating ligase, but the importance and extent of MdmX involvement in this process are largely unknown. Here we show that when Mdm2 functions as a neddylating enzyme, MdmX is stabilized.

View Article and Find Full Text PDF

Metastasis of cancer cells to distant organ systems is a complex process that is initiated with the programming of cells in the primary tumor. The formation of distant metastatic foci is correlated with poor prognosis and limited effective treatment options. We and others have correlated Mouse double minute 2 (Mdm2) with metastasis; however, the mechanisms involved have not been elucidated.

View Article and Find Full Text PDF

Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells.

View Article and Find Full Text PDF

OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM.

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBC) are typically resistant to treatment, and strategies that build upon frontline therapy are needed. Targeting the murine double minute 2 (Mdm2) protein is an attractive approach, as Mdm2 levels are elevated in many therapy-refractive breast cancers. The Mdm2 protein-protein interaction inhibitor Nutlin-3a blocks the binding of Mdm2 to key signaling molecules such as p53 and p73α and can result in activation of cell death signaling pathways.

View Article and Find Full Text PDF

Murine double minute-2 protein (Mdm2) is a multifaceted phosphorylated protein that plays a role in regulating numerous proteins including the tumor suppressor protein p53. Mdm2 binds to and is involved in conjugating either ubiquitin or Nedd8 (Neural precursor cell expressed, developmentally down-regulated 8) to p53. Although regulation of the E3 ubiquitin activity of Mdm2 has been investigated, regulation of the neddylating activity of Mdm2 remains to be defined.

View Article and Find Full Text PDF

Reliance on glycolysis is a characteristic of malignancy, yet the development of resistance to BRAF inhibitors in melanoma is associated with gain of mitochondrial function. Concurrent attenuation of oxidative phosphorylation and HIF-1α/PKM2-dependent glycolysis promotes a non-apoptotic, iron- and oxygen-dependent cell death that we term ferroxitosis. The redox cycling agent menadione causes a robust increase in oxygen consumption, accompanied by significant loss of intracellular ATP and rapid cell death.

View Article and Find Full Text PDF

Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al.

View Article and Find Full Text PDF

Serdemetan (JNJ-26854165), an antagonist to Mdm2, was anticipated to promote the activation of p53. While regulation of p53 by Mdm2 is important, Mdm2 also regulates numerous proteins involved in diverse cellular functions. We investigated if Serdemetan would alter the Mdm2-HIF1α axis and affect cell survival in human glioblastoma cells independently of p53.

View Article and Find Full Text PDF

Purpose: An understanding of how hematopoietic cells respond to therapy that causes myelosuppression will help develop approaches to prevent this potentially life-threatening toxicity. The goal of this study was to determine how human myeloid precursor cells respond to temozolomide (TMZ)-induced DNA damage.

Experimental Design: We developed an ex vivo primary human myeloid precursor cells model system to investigate the involvement of cell-death pathways using a known myelosuppressive regimen of O(6)-benzylguanine (6BG) and TMZ.

View Article and Find Full Text PDF