Publications by authors named "Lindsey Crowley"

Article Synopsis
  • TL-895 is a potent and selective second-generation drug that irreversibly inhibits Bruton's tyrosine kinase (BTK), showing strong potential in treating B-cell lymphomas.
  • The drug was assessed for its effectiveness in various models, demonstrating significant inhibition of BTK activity, auto-phosphorylation, and tumor growth in multiple types of lymphoma cells and xenograft models.
  • Despite some effects on antibody-dependent cell-mediated cytotoxicity, TL-895 proved to be mainly effective at higher exposure levels, indicating its promising role in B-cell lymphoma treatment.
View Article and Find Full Text PDF

The PI3K-Akt-mTOR (PAM) pathway is implicated in tumor progression in many tumor types, including metastatic gastric cancer (GC). The initial promise of PAM inhibitors has been unrealized in the clinic, presumably due, in part, to the up-regulation of Akt signaling that occurs when the pathway is inhibited. Here we present that DIACC3010 (formerly M2698), an inhibitor of two nodes in the PAM pathway, p70S6K and Akt 1/3, blocks the pathway in in vitro and in vivo preclinical models of GC while providing a mechanism that inhibits signaling from subsequent Akt up-regulation.

View Article and Find Full Text PDF

Central nervous system-penetrant therapies with intracranial efficacy against non-small cell lung cancer (NSCLC) brain metastases are urgently needed. We report preclinical studies investigating brain penetration and intracranial activity of the MET inhibitor tepotinib. After intravenous infusion of tepotinib in Wistar rats (n = 3), mean (±standard deviation) total tepotinib concentration was 2.

View Article and Find Full Text PDF

Herein, we report the discovery of a novel class of quinazoline carboxamides as dual p70S6k/Akt inhibitors for the treatment of tumors driven by alterations to the PI3K/Akt/mTOR (PAM) pathway. Through the screening of in-house proprietary kinase library, 4-benzylamino-quinazoline-8-carboxylic acid amide stood out, with sub-micromolar p70S6k biochemical activity, as the starting point for a structurally enabled p70S6K/Akt dual inhibitor program that led to the discovery of M2698, a dual p70S6k/Akt inhibitor. M2698 is kinase selective, possesses favorable physical, chemical, and DMPK profiles, is orally available and well tolerated, and displayed tumor control in multiple studies of PAM pathway-driven tumors.

View Article and Find Full Text PDF

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit ), identified by a cellular screening in MDA-MB-231, is described.

View Article and Find Full Text PDF

Purpose: The yield of comprehensive genomic profiling in recruiting patients to molecular-based trials designed for small subgroups has not been fully evaluated. We evaluated the likelihood of enrollment in a clinical trial that required the identification of a specific genomic change based on our institute-wide genomic tumor profiling.

Patients And Methods: Using genomic profiling from archived tissue samples derived from patients with metastatic breast cancer treated between 2011 and 2017, we assessed the impact of systematic genomic characterization on enrollment in an ongoing phase II trial (ClinicalTrials.

View Article and Find Full Text PDF

Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug.

View Article and Find Full Text PDF

Background: Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO).

View Article and Find Full Text PDF