Publications by authors named "Lindsey Carfrae"

Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models.

View Article and Find Full Text PDF

Acinetobacter baumannii is a pathogenic and multidrug-resistant Gram-negative bacterium that causes severe nosocomial infections. To better understand the mechanism of pathogenesis, we compare the proteomes of uninfected and infected human cells, revealing that transcription factor FOS is the host protein most strongly induced by A. baumannii infection.

View Article and Find Full Text PDF

Treating multidrug-resistant infections has increasingly relied on last-resort antibiotics, including polymyxins, for example colistin. As polymyxins are given routinely, the prevalence of their resistance is on the rise and increases mortality rates of sepsis patients. The global dissemination of plasmid-borne colistin resistance, driven by the emergence of mcr-1, threatens to diminish the therapeutic utility of polymyxins from an already shrinking antibiotic arsenal.

View Article and Find Full Text PDF

Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development.

View Article and Find Full Text PDF

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes.

View Article and Find Full Text PDF

The difficulty in treating Gram-negative bacteria can largely be attributed to their highly impermeable outer membrane (OM), which serves as a barrier to many otherwise active antibiotics. This can be overcome with the use of perturbant molecules, which disrupt OM integrity and sensitize Gram-negative bacteria to many clinically available Gram-positive-active antibiotics. Although many new perturbants have been identified in recent years, most of these molecules are impeded by toxicity due to the similarities between pathogen and host cell membranes.

View Article and Find Full Text PDF

Metergoline is a semisynthetic ergot alkaloid identified recently as an inhibitor of the Gram-negative intracellular pathogen Typhimurium ( Tm). With the previously unknown antibacterial activity of metergoline, we explored structure-activity relationships (SARs) with a series of carbamate, urea, sulfonamide, amine, and amide analogues. Cinnamide and arylacrylamide derivatives show improved potency relative to metergoline against Gram-positive bacteria, and pyridine derivative is also effective against methicillin-resistant (MRSA) in a murine skin infection model.

View Article and Find Full Text PDF

The growing challenge of microbial resistance emphasizes the importance of new antibiotics or reviving strategies for the use of old ones. Macrolide antibiotics are potent bacterial protein synthesis inhibitors with a formidable capacity to treat life-threatening bacterial infections; however, acquired and intrinsic resistance limits their clinical application. In the work presented here, we reveal that bicarbonate is a potent enhancer of the activity of macrolide antibiotics that overcomes both acquired and intrinsic resistance mechanisms.

View Article and Find Full Text PDF

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae.

View Article and Find Full Text PDF

The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating the exploration of alternative therapies. has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated. Here, we show that cannabinoids exhibit antibacterial activity against methicillin-resistant (MRSA), inhibit its ability to form biofilms, and eradicate preformed biofilms and stationary phase cells persistent to antibiotics.

View Article and Find Full Text PDF

To revitalize the antibiotic pipeline, it is critical to identify and validate new antimicrobial targets. In Mycobacteria tuberculosis and Francisella tularensis, biotin biosynthesis is a key fitness determinant during infection, making it a high-priority target. However, biotin biosynthesis has been overlooked for priority pathogens such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Plasmid-borne colistin resistance mediated by mcr-1 may contribute to the dissemination of pan-resistant Gram-negative bacteria. Here, we show that mcr-1 confers resistance to colistin-induced lysis and bacterial cell death, but provides minimal protection from the ability of colistin to disrupt the Gram-negative outer membrane. Indeed, for colistin-resistant strains of Enterobacteriaceae expressing plasmid-borne mcr-1, clinically relevant concentrations of colistin potentiate the action of antibiotics that, by themselves, are not active against Gram-negative bacteria.

View Article and Find Full Text PDF

Bacterial transposons were long thought of as selfish mobile genetic elements that propagate at the expense of 'host' bacterium fitness. However, limited transposition can benefit the host organism by promoting DNA rearrangements and facilitating horizontal gene transfer. Here we discuss and provide context for our recently published work which reported the surprising finding that an otherwise dormant transposon, IS200, encodes a regulatory RNA in Salmonella Typhimurium.

View Article and Find Full Text PDF