The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) in an endothelial cell coculture system that recapitulates the transcriptome, morphology, and immunophenotype of C/G acute myeloid leukemia (AML) and induces highly aggressive leukemia in xenograft models. Interrogating the transcriptome of C/G-CB cells and primary C/G AML identified a library of C/G-fusion-specific genes that are potential targets for therapy.
View Article and Find Full Text PDFPurpose: We previously identified mesothelin (MSLN) as highly expressed in a significant fraction of acute myeloid leukemia (AML) but entirely silent in normal hematopoiesis, providing a promising antigen for immunotherapeutic targeting that avoids hematopoietic toxicity. Given that T cells genetically modified to express chimeric antigen receptors (CAR) are effective at eradicating relapsed/refractory acute lymphocytic leukemia, we developed MSLN-directed CAR T cells for preclinical evaluation in AML.
Experimental Design: The variable light (VL) and heavy (VH) sequences from the MSLN-targeting SS1P immunotoxin were used to construct the single-chain variable fragment of the standard CAR containing 41-BB costimulatory and CD3Zeta stimulatory domains.
Background Blunt cerebrovascular injury (BCVI) is associated with increased stroke and mortality risk. However, the most appropriate follow-up strategy remains uncertain. Purpose To better understand the natural history of BCVI and help define the most optimal timing and length of follow-up imaging.
View Article and Find Full Text PDF