IEEE Trans Ultrason Ferroelectr Freq Control
July 2017
Acoustic properties can be exploited to infer and evaluate tissue microstructure. However, common assumptions are that the medium of interest is homogeneous and isotropic, and that its underlying physical properties cause diffuse scattering. In this paper, we describe how we developed and tested novel parameters designed to address isotropy/anisotropy in backscattered echo signal power in complex biological tissues.
View Article and Find Full Text PDFShear wave elasticity imaging has shown promise in evaluation of the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2016
The estimation of many spectral-based quantitative ultrasound parameters assumes that backscattered echo signals are from a stationary, incoherent scattering process. The accuracy of these assumptions in real tissue can limit the diagnostic value of these parameters and the physical insight about tissue microstructure they can convey. This work presents an empirical decision test to determine the presence of significant coherent contributions to echo signals and whether they are caused by low scatterer number densities or the presence of specular reflectors or scatterers with periodic spacing.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2016
Cervical softness is a critical parameter in pregnancy. Clinically, preterm birth is associated with premature cervical softening and postdates birth is associated with delayed cervical softening. In practice, the assessment of softness is subjective, based on digital examination.
View Article and Find Full Text PDF