Publications by authors named "Lindsey Brier"

Significance: Determining the long-term cognitive impact of infections is clinically challenging. Using functional cortical connectivity, we demonstrate that interhemispheric cortical connectivity is decreased in individuals with acute Zika virus (ZIKV) encephalitis. This correlates with decreased presynaptic terminals in the somatosensory cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Wide-field calcium imaging (WFCI) allows researchers to observe neuronal activity in mice but requires manual categorization of sleep states, which is time-consuming and inconsistent.
  • A new method combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BiLSTM) has been developed to automate the classification of sleep states (wakefulness, NREM, REM) from WFCI data.
  • The automated system achieved an accuracy of 84% and a Cohen's κ of 0.64, indicating it can classify sleep states comparably to human scoring, suggesting its potential for enhancing sleep research.
View Article and Find Full Text PDF

Background: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability.

View Article and Find Full Text PDF

Neurologic complications of Zika virus (ZIKV) infection across the lifespan have been described during outbreaks in Southeast Asia, South America, and Central America since 2016. In the adult CNS ZIKV tropism for neurons is tightly linked to its effects, with neuronal loss within the hippocampus during acute infection and protracted synapse loss during recovery, which is associated with cognitive deficits. The effects of ZIKV on cortical networks have not been evaluated.

View Article and Find Full Text PDF

As a regressive neurodevelopmental disorder with a well-established genetic cause, Rett syndrome and its Mecp2 loss-of-function mouse model provide an excellent opportunity to define potentially translatable functional signatures of disease progression, as well as offer insight into the role of Mecp2 in functional circuit development. Thus, we applied widefield optical fluorescence imaging to assess mesoscale calcium functional connectivity (FC) in the Mecp2 cortex both at postnatal day (P)35 in development and during the disease-related decline. We found that FC between numerous cortical regions was disrupted in Mecp2 mutant males both in juvenile development and early adulthood.

View Article and Find Full Text PDF

Significance: Wide-field optical imaging (WOI) can produce concurrent hemodynamic and cell-specific calcium recordings across the entire cerebral cortex in animal models. There have been multiple studies using WOI to image mouse models with various environmental or genetic manipulations to understand various diseases. Despite the utility of pursuing mouse WOI alongside human functional magnetic resonance imaging (fMRI), and the multitude of analysis toolboxes in the fMRI literature, there is not an available open-source, user-friendly data processing and statistical analysis toolbox for WOI data.

View Article and Find Full Text PDF

Functional connectivity (FC) is a sensitive metric that provides a readout of whole cortex coordinate neural activity in a mouse model. We examine the impact of experimental SAH modeled through endovascular perforation, and the effectiveness of subsequent treatment on FC, through three key questions: 1) Does the endovascular perforation model of SAH induce deficits in FC; 2) Does exposure to hypoxic conditioning provide protection against these FC deficits and, if so, is this neurovascular protection SIRT1-mediated; and 3) does treatment with the SIRT1 activator resveratrol alone provide protection against these FC deficits? Cranial windows were adhered on skull-intact mice that were then subjected to either sham or SAH surgery and either left untreated or treated with hypoxic post-conditioning (with or without EX527) or resveratrol for 3 days. Mice were imaged 3 days post-SAH/sham surgery, temporally aligned with the onset of major SAH sequela in mice.

View Article and Find Full Text PDF

Background: Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural dynamics in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming and often suffers from low inter- and intra-rater reliability and invasiveness.

View Article and Find Full Text PDF

Temporal correlation analysis of spontaneous brain activity (e.g., Pearson "functional connectivity," FC) has provided insights into the functional organization of the human brain.

View Article and Find Full Text PDF

Cross-sectional studies have established a variety of structural, synaptic, and cell physiological changes corresponding to critical periods in cortical development. However, the emergence of functional connectivity (FC) in development has not been fully characterized, and hemodynamic-based measures are vulnerable to any neurovascular coupling changes occurring in parallel. We therefore used optical fluorescence imaging to trace longitudinal calcium FC in the awake, resting-state mouse cortex at 5 developmental timepoints beginning at postnatal day 15 (P15) and ending in early adulthood at P60.

View Article and Find Full Text PDF

Vascular disease contributes to neurodegeneration, which is associated with decreased blood pressure in older humans. Plasmalogens, ether phospholipids produced by peroxisomes, are decreased in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the mechanistic links between ether phospholipids, blood pressure, and neurodegeneration are not fully understood.

View Article and Find Full Text PDF

Familial hemiplegic migraine is an episodic neurological disorder characterized by transient sensory and motor symptoms and signs. Mutations of the ion pump α2-Na/K ATPase cause familial hemiplegic migraine, but the mechanisms by which α2-Na/K ATPase mutations lead to the migraine phenotype remain incompletely understood. Here, we show that mice in which α2-Na/K ATPase is conditionally deleted in astrocytes display episodic paralysis.

View Article and Find Full Text PDF

Modulation of brain state, e.g., by anesthesia, alters the correlation structure of spontaneous activity, especially in the delta band.

View Article and Find Full Text PDF

Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) of the subthalamic nucleus produces variable effects in Parkinson disease. Variation may result from different electrode positions relative to target. Thus, precise electrode localization is crucial when investigating DBS effects.

View Article and Find Full Text PDF

Received wisdom in the field of fungal biology holds that the process of editing a genome by transformation and homologous recombination is inherently mutagenic. However, that belief is based on circumstantial evidence. We provide the first direct measurement of the effects of transformation on a fungal genome by sequencing the genomes of 29 transformants and 30 untransformed controls with high coverage.

View Article and Find Full Text PDF

The interplay between hemodynamic-based markers of cortical activity (e.g. fMRI and optical intrinsic signal imaging), which are an indirect and relatively slow report of neural activity, and underlying synaptic electrical and metabolic activity through neurovascular coupling is a topic of ongoing research and debate.

View Article and Find Full Text PDF

The biophysical chemistry of macromolecular complexes confer their functional characteristics. We investigate the mechanisms that make the AB5 holotoxin of Vibrio cholerae (CT) a significantly more pathogenic molecule than the enterotoxin of Escherichia coli (LT) with which it shares 88% similarity and whose structure is homologous with a backbone RMSD of 0.84 Å and imposes its deleterious effects though the same process to constitutively ADP-ribosylate adenylate cyclase.

View Article and Find Full Text PDF