Cholera toxin (CT) traffics from the host cell surface to the endoplasmic reticulum (ER), where the toxin's catalytic CTA1 subunit retrotranslocates to the cytosol to induce toxicity. In the ER, CT is captured by the E3 ubiquitin ligase Hrd1 via an undefined mechanism to prepare for retrotranslocation. Using loss-of-function and gain-of-function approaches, we demonstrate that the ER-resident factor ERdj5 promotes CTA1 retrotranslocation, in part, via its J domain.
View Article and Find Full Text PDFCurrent antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair.
View Article and Find Full Text PDF