Publications by authors named "Lindsey Atkinson"

To determine (1) whether acclimation of carbon metabolism to low temperatures results in recovery of the relative growth rate (RGR) of plants in the cold and (2) the source of N underpinning cold acclimation in Arabidopsis thaliana, we supplied plants with a nutrient solution labelled with (15) N and subjected them to a temperature shift (from 23 to 5 °C). Whole-plant RGR of cold-treated plants was initially less than 30% of that of warm-maintained control plants. After 14 d, new leaves with a cold-acclimated phenotype emerged, with the RGR of cold-treated plants increasing by 50%; there was an associated recovery of root RGR and doubling of the net assimilation rate (NAR).

View Article and Find Full Text PDF

Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28 degrees C). When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants.

View Article and Find Full Text PDF

* The impact of nitrogen (N) supply on the temperature response of root respiratory O(2) uptake (R) was assessed in several herbaceous species grown in solution culture. Warm-grown (25 : 20 degrees C, day:night) plants differing in root N concentration were shifted to 13 : 8 degrees C for 7 d to cold-acclimate. * Log-log plots of root R vs root N concentration both showed that R increased with increasing tissue N concentration, irrespective of the growth temperature.

View Article and Find Full Text PDF