Publications by authors named "Lindsey Aschbacher-Smith"

Heterozygous de novo or inherited gain-of-function mutations in the MTOR gene cause Smith-Kingsmore syndrome (SKS). SKS is a rare autosomal dominant condition, and individuals with SKS display macrocephaly/megalencephaly, developmental delay, intellectual disability, and seizures. A few dozen individuals are reported in the literature.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF-1) microdeletion syndrome accounts for 5 to 11% of individuals with NF-1. The aim of our study was to characterize a large cohort of individuals with NF-1 microdeletion syndrome and expand its natural history. We conducted a retrospective chart review from 1994 to 2024 of individuals with NF-1 microdeletion syndrome followed at two large Neurofibromatosis Clinics.

View Article and Find Full Text PDF

Background: Neurofibromatosis type 1 (NF1) is a genetic neurocutaneous disorder commonly associated with motor and cognitive symptoms that greatly impact quality of life. Transcranial magnetic stimulation (TMS) can quantify motor cortex physiology, reflecting the basis for impaired motor function as well as, possibly, clues for mechanisms of effective treatment. We hypothesized that children with NF1 have impaired motor function and altered motor cortex physiology compared to typically developing (TD) control children and children with attention-deficit/hyperactivity disorder (ADHD).

View Article and Find Full Text PDF

Normal Schwann cells (SCs) are quiescent in adult nerves, when ATP is released from the nerve in an activity dependent manner. We find that suppressing nerve activity in adult nerves causes SC to enter the cell cycle. In vitro, ATP activates the SC G-protein coupled receptor (GPCR) P2Y2.

View Article and Find Full Text PDF

Background: Effective medical therapies are lacking for the treatment of neurofibromatosis type 1-related plexiform neurofibromas, which are characterized by elevated RAS-mitogen-activated protein kinase (MAPK) signaling.

Methods: We conducted a phase 1 trial of selumetinib (AZD6244 or ARRY-142886), an oral selective inhibitor of MAPK kinase (MEK) 1 and 2, in children who had neurofibromatosis type 1 and inoperable plexiform neurofibromas to determine the maximum tolerated dose and to evaluate plasma pharmacokinetics. Selumetinib was administered twice daily at a dose of 20 to 30 mg per square meter of body-surface area on a continuous dosing schedule (in 28-day cycles).

View Article and Find Full Text PDF

The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage.

View Article and Find Full Text PDF

Restoring the native structure of the tendon enthesis, where collagen fibers of the midsubstance are integrated within a fibrocartilaginous structure, is problematic following injury. As current surgical methods fail to restore this region adequately, engineers, biologists, and clinicians are working to understand how this structure forms as a prerequisite to improving repair outcomes. We recently reported on the role of Indian hedgehog (Ihh), a novel enthesis marker, in regulating early postnatal enthesis formation.

View Article and Find Full Text PDF

Tendons are typically composed of two histologically different regions: the midsubstance and insertion site. We previously showed that Gli1, a downstream effector of the hedgehog (Hh) signaling pathway, is expressed only in the insertion site of the mouse patellar tendon during its differentiation. To test for a functional role of Hh signaling, we targeted the Smoothened (Smo) gene in vivo using a Cre/Lox system.

View Article and Find Full Text PDF

The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse.

View Article and Find Full Text PDF

Tendon injuries are common clinical problems and are difficult to treat. In particular, the tendon-to-bone insertion site, once damaged, does not regenerate its complex zonal arrangement. A potential treatment for tendon injuries is to replace injured tendons with bioengineered tendons.

View Article and Find Full Text PDF

Tendon injuries are major orthopedic problems that worsen as the population ages. Type-I (Col1) and type-II (Col2) collagens play important roles in tendon midsubstance and tendon-to-bone insertion healing, respectively. Using double transgenic mice, this study aims to spatiotemporally monitor Col1 and Col2 gene expression, histology, and biomechanics up to 8 weeks following a full-length patellar tendon injury.

View Article and Find Full Text PDF

Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone.

View Article and Find Full Text PDF