We investigated the role of PTEN (phosphatase and tensin homolog deleted on chromosome 10) during neurite outgrowth of human embryonic stem cell (hESC)-derived neuronal progenitors. PTEN inhibits phosphoinositide 3-kinase (PI3K)/Akt signaling, a common and central outgrowth and survival pathway downstream of neuronal growth factors. It is known that PTEN inhibition, by either polymorphic mutation or gene deletion, can lead to the development of tumorigenesis (Stambolic et al.
View Article and Find Full Text PDFCell replacement strategies hold great promise for the treatment of central nervous system injuries and degenerative diseases. The advancement of stem cell therapies has proven to be a viable therapeutic approach to limit secondary degeneration and restore neuronal circuitry at the site of injury. Cell replacement strategies confer phenotype-specific and neurotrophic benefits to the surrounding tissue; however, the mechanisms of transplant-mediated repair are unique to each transplant population.
View Article and Find Full Text PDF