Publications by authors named "Lindsey A Allan"

Two major mechanisms safeguard genome stability during mitosis: the mitotic checkpoint delays mitosis until all chromosomes have attached to microtubules, and the kinetochore-microtubule error-correction pathway keeps this attachment process free from errors. We demonstrate here that the optimal strength and dynamics of these processes are set by a kinase-phosphatase pair (PLK1-PP2A) that engage in negative feedback from adjacent phospho-binding motifs on the BUB complex. Uncoupling this feedback to skew the balance towards PLK1 produces a strong checkpoint, hypostable microtubule attachments and mitotic delays.

View Article and Find Full Text PDF

Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1.

View Article and Find Full Text PDF

PP2A-B56 is a serine/threonine phosphatase complex that regulates several major mitotic processes, including sister chromatid cohesion, kinetochore-microtubule attachment and the spindle assembly checkpoint. We show here that these key functions are divided between different B56 isoforms that localise to either the centromere or kinetochore. The centromeric isoforms rely on a specific interaction with Sgo2, whereas the kinetochore isoforms bind preferentially to BubR1 and other proteins containing an LxxIxE motif.

View Article and Find Full Text PDF

Mitotic arrest can result in cell death through the process of apoptosis. We have shown by live-cell imaging that the ubiquitin-proteasome dependent proteolysis of the apoptotic regulator Mcl-1 under the control of the anaphase-promoting complex or cyclosome (APC/C) provides a timing mechanism that distinguishes prolonged mitotic arrest from normal mitosis.

View Article and Find Full Text PDF

The initiation of apoptosis in response to the disruption of mitosis provides surveillance against chromosome instability. Here, we show that proteolytic destruction of the key regulator Mcl-1 during an extended mitosis requires the anaphase-promoting complex or cyclosome (APC/C) and is independent of another ubiquitin E3 ligase, SCF Using live-cell imaging, we show that the loss of Mcl-1 during mitosis is dependent on a D box motif found in other APC/C substrates, while an isoleucine-arginine (IR) C-terminal tail regulates the manner in which Mcl-1 engages with the APC/C, converting Mcl-1 from a Cdc20-dependent and checkpoint-controlled substrate to one that is degraded independently of checkpoint strength. This mechanism ensures a relatively slow but steady rate of Mcl-1 degradation during mitosis and avoids its catastrophic destruction when the mitotic checkpoint is satisfied, providing an apoptotic timer that can distinguish a prolonged mitotic delay from normal mitosis.

View Article and Find Full Text PDF

Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which delays progression through mitosis until every chromosome has stably attached to spindle microtubules via the kinetochore. We show here that the deubiquitinase USP9X strengthens the SAC by antagonizing the turnover of the mitotic checkpoint complex produced at unattached kinetochores. USP9X thereby opposes activation of anaphase-promoting complex/cyclosome (APC/C) and specifically inhibits the mitotic degradation of SAC-controlled APC/C substrates.

View Article and Find Full Text PDF

Regulation of cell death is crucial for the response of cancer cells to drug treatments that cause arrest in mitosis, and is likely to be important for protection against chromosome instability in normal cells. Prolonged mitotic arrest can result in cell death by activation of caspases and the induction of apoptosis. Here, we show that X-linked inhibitor of apoptosis (XIAP) plays a key role in the control of mitotic cell death.

View Article and Find Full Text PDF

A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells.

View Article and Find Full Text PDF

Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells.

View Article and Find Full Text PDF

The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti-apoptotic protein Mcl-1 is regulated during the cell cycle and peaks at mitosis. Mcl-1 is phosphorylated at two sites in mitosis, Ser64 and Thr92.

View Article and Find Full Text PDF

Cell death by the process of apoptosis plays important roles in development, tissue homeostasis, diseases and drug responses. The cysteine aspartyl protease caspase-9 plays a central role in the mitochondrial or intrinsic apoptotic pathway that is engaged in response to many apoptotic stimuli. Caspase-9 is activated in a large multimeric complex, the apoptosome, which is formed with apoptotic peptidase activating factor 1 (Apaf-1) in response to the release of cytochrome c from mitochondria.

View Article and Find Full Text PDF

Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death.

View Article and Find Full Text PDF

DYRK1A is a member of the dual-specificity tyrosine-phosphorylation-regulated protein kinase family and is implicated in Down's syndrome. Here, we identify the cysteine aspartyl protease caspase 9, a critical component of the intrinsic apoptotic pathway, as a substrate of DYRK1A. Depletion of DYRK1A from human cells by short interfering RNA inhibits the basal phosphorylation of caspase 9 at an inhibitory site, Thr125.

View Article and Find Full Text PDF

Our recent results demonstrate that caspase activation is regulated during the cell cycle, establishing a direct link between the regulation of apoptosis and cell division (Allan and Clarke, 2007). We show that phosphorylation of caspase-9 is critical for the balance between these processes, restraining the initiation of apoptosis during mitosis. This mechanism is likely to be important in determining sensitivity to anti-cancer drugs that target mitotic cells.

View Article and Find Full Text PDF

Caspase-9 plays a critical role in the initiation of apoptosis by the mitochondrial pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr(125) by ERK1/2 MAPKs in response to growth factors. Here, we show that phosphorylation of this site is specific for these classical MAPKs and is not strongly induced when JNK and p38alpha/beta MAPKs are activated by anisomycin.

View Article and Find Full Text PDF

Proliferating metazoan cells respond to damage that has the potential to cause genomic instability by restricting the cell division cycle or by initiating apoptosis. The molecular mechanisms determining the balance between these responses are not well understood. Here, we show that the apoptotic initiator protease caspase-9 is regulated during the cell cycle through periodic phosphorylation at an inhibitory site, Thr125.

View Article and Find Full Text PDF

Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis.

View Article and Find Full Text PDF

The cyclic AMP signal transduction pathway modulates apoptosis in diverse cell types, although the mechanism is poorly understood. A critical component of the intrinsic apoptotic pathway is caspase-9, which is activated by Apaf-1 in the apoptosome, a large complex assembled in response to release of cytochrome c from mitochondria. Caspase-9 cleaves and activates effector caspases, predominantly caspase-3, resulting in the demise of the cell.

View Article and Find Full Text PDF

Many pro-apoptotic signals activate caspase-9, an initiator protease that activates caspase-3 and downstream caspases to initiate cellular destruction. However, survival signals can impinge on this pathway and suppress apoptosis. Activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) pathway is associated with protection of cells from apoptosis and inhibition of caspase-3 activation, although the targets are unknown.

View Article and Find Full Text PDF