Glutamine (GLN) has been shown to be a key pharmaconutrient in the body's response to stress and injury. It exerts its protective effects via multiple mechanisms, including direct protection of cells and tissue from injury, attenuation inflammation, and preservation of metabolic function. Data support GLN as an ideal pharmacologic intervention to prevent or treat multiple organ dysfunction syndrome after sepsis or other injuries in the intensive care unit population.
View Article and Find Full Text PDFMany performance-enhancing supplements and/or drugs are increasing in popularity among professional and amateur athletes alike. Although the uncontrolled use of these agents can pose health risks in the general population, their clearly demonstrated benefits could prove helpful to the critically ill population in whom preservation and restoration of lean body mass and neuromuscular function are crucial. Post-intensive care unit weakness not only impairs post-intensive care unit quality of life but also correlates with intensive care unit mortality.
View Article and Find Full Text PDFThis study was designed to quantify and identify differences in protein levels between tumor and adjacent normal breast tissue from the same breast in 18 women with stage I/II ER positive/Her2/neu negative invasive breast cancer. Eighteen separate difference gel electrophoresis (DIGE) gels were run (1 gel per patient). Relative quantification was based on DIGE analysis.
View Article and Find Full Text PDFPurpose Of Review: A growing body of data has revealed that specific nutrient deficiencies contribute to microvascular and cellular dysfunction following critical illness. Further, targeted administration of these 'pharmaconutrients' may reverse or improve this dysfunction and improve clinical outcome.
Recent Findings: Specific nutrient therapy with glutamine protects cellular metabolism and vascular function via induction of heat shock proteins, which are key proteins found to be deficient following acute illness.
The relationship between elevated blood pressure and cardiovascular and cerebrovascular disease risk is well accepted. Both systolic and diastolic hypertension are associated with this risk increase, but systolic blood pressure appears to be a more important determinant of cardiovascular risk than diastolic blood pressure. Subjects for this study are derived from the Framingham Heart Study data set.
View Article and Find Full Text PDF