The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.
View Article and Find Full Text PDFProtein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.
View Article and Find Full Text PDFDopamine neurons of the ventral tegmental area (VTA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli.
View Article and Find Full Text PDFProtein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin signaling pathways, making it a highly attractive target for the treatment of type II diabetes. For PTP1B to perform its enzymatic function, a loop referred to as the "WPD loop" must transition between open (catalytically incompetent) and closed (catalytically competent) conformations, which have both been resolved by X-ray crystallography. Although prior studies have established this transition as the rate-limiting step for catalysis, the transition mechanism for PTP1B and other PTPs has been unclear.
View Article and Find Full Text PDFDopamine neurons of the ventral tegmental area (VTA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli.
View Article and Find Full Text PDFFragment-based drug discovery has led to six approved drugs, but the small sizes of the chemical fragments used in such methods typically result in only weak interactions between the fragment and its target molecule, which makes it challenging to experimentally determine the three-dimensional poses fragments assume in the bound state. One computational approach that could help address this difficulty is long-timescale molecular dynamics (MD) simulations, which have been used in retrospective studies to recover experimentally known binding poses of fragments. Here, we present the results of long-timescale MD simulations that we used to prospectively discover binding poses for two series of fragments in allosteric pockets on a difficult and important pharmaceutical target, protein tyrosine phosphatase 1b (PTP1b).
View Article and Find Full Text PDFChronic stress can have lasting adverse consequences in some individuals, yet others are resilient to the same stressor. Susceptible and resilient individuals exhibit differences in the intrinsic properties of mesolimbic dopamine (DA) neurons after the stressful experience is over. However, the causal links between DA, behaviour during stress and individual differences in resilience are unknown.
View Article and Find Full Text PDFA "fragment hit", a molecule of low molecular weight that has been validated to bind to a target protein, can be an effective chemical starting point for a drug discovery project. Our ability to find and progress fragment hits could potentially be improved by enhancing our understanding of their binding properties, which to date has largely been based on tacit knowledge and reports from individual projects. In the work reported here, we systematically analyzed the molecular and binding properties of fragment hits using 489 published protein-fragment complexes.
View Article and Find Full Text PDFThe need for automated and efficient systems for tracking full animal pose has increased with the complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal pose), a deep-learning-based method for predicting the positions of animal body parts. This framework consists of a graphical interface for labeling of body parts and training the network.
View Article and Find Full Text PDFMapping of protein-protein interactions (PPIs) is critical for understanding protein function and complex biological processes. Here, we present DULIP, a dual luminescence-based co-immunoprecipitation assay, for systematic PPI mapping in mammalian cells. DULIP is a second-generation luminescence-based PPI screening method for the systematic and quantitative analysis of co-immunoprecipitations using two different luciferase tags.
View Article and Find Full Text PDF