Publications by authors named "Lindsay W Black"

The virions of tailed bacteriophages and the evolutionarily related herpesviruses contain, in addition to highly condensed DNA, substantial quantities of internal proteins. These proteins ("ejection proteins") have roles in scaffolding, maturational proteolysis, and cell-to-cell delivery. Whereas capsids are amenable to analysis at high resolution by cryo-electron microscopy, internal proteins have proved difficult to localize.

View Article and Find Full Text PDF

The head of virus SPN3US is composed of ~50 different proteins and is unusual because within its packaged genome there is a mass (>40 MDa) of ejection or E proteins that enter the cell. The assembly mechanisms of this complex structure are poorly understood. Previous studies showed that eight proteins in the mature SPN3US head had been cleaved by the prohead protease.

View Article and Find Full Text PDF

A "DNA crunching" linear motor mechanism that employs a grip-and-release transient spring like compression of B- to A-form DNA has been found in our previous studies. Our FRET measurements in vitro show a decrease in distance from TerL to portal during packaging; furthermore, there is a decrease in distance between closely positioned dye pairs in the Y-stem of translocating Y-DNA that conforms to B- and A- structure. In normal translocation into the prohead the TerL motor expels all B-form tightly binding YOYO-1 dye that cannot bind A-form.

View Article and Find Full Text PDF

A bacteriophage T4 DNA "synapsis model" proposes that the bacteriophage T4 terminase small subunit (TerS) apposes two pac site containing dsDNA homologs to gauge concatemer maturation adequate for packaging initiation. N-terminus, C-terminus, or both ends modified fusion Ter S proteins retain function. Replacements of the TerS gene in the T4 genome with fusion genes encoding larger (18-45 kDa) TerS-eGFP and TerS-mCherry fluorescent fusion proteins function without significant change in phenotype.

View Article and Find Full Text PDF

The 240-kb phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection.

View Article and Find Full Text PDF

In bacteriophages related to T4, hydroxymethylcytosine (hmC) is incorporated into the genomic DNA during DNA replication and is then further modified to glucosyl-hmC by phage-encoded glucosyltransferases. Previous studies have shown that RB69 shares a core set of genes with T4 and relatives. However, unlike the other “RB” phages, RB69 is unable to recombine its DNA with T4 or with the other “RB” isolates.

View Article and Find Full Text PDF

Giant phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolus of ejection proteins within their heads, including a multi-subunit virion RNA polymerase (vRNAP), that enter the host cell with the DNA during infection.

View Article and Find Full Text PDF

Unlabelled: Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge.

View Article and Find Full Text PDF

The first reported Type IV restriction endonuclease (REase) GmrSD consists of GmrS and GmrD subunits. In most bacteria, however, the gmrS and gmrD genes are fused together to encode a single-chain protein. The fused coding sequence for ECSTEC94C_1402 from E.

View Article and Find Full Text PDF

DNA packaging into empty viral procapsids by ATP-driven motor proteins applies widely among viruses. Recent fluorescence studies of phage T4 reveal: 1) the small terminase subunit (TerS) synapses pac homologs by a twin ring mechanism to gauge DNA maturation and allow packaging by the large terminase subunit (TerL); 2) translocation of linear DNA is efficient by TerL acting alone; expansion of the procapsid is controlled by the portal-terminase assembly; 3) both ends of the packaged DNA are held at the portal, showing a loop of DNA is packaged; 4) transient spring-like compression of B form to A form-like DNA accompanies translocation; 5) the C-terminal domain of TerL is docked to the portal and moves toward it when stalled; 6) a portal bound resolvase can release stalled Y-DNA compression and allow translocation in vitro; and 7) ATP powered translocation on A form dsDNA is supported by recent hexameric helicase studies.

View Article and Find Full Text PDF

Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids.

View Article and Find Full Text PDF

Bacteriophage T4 has proven itself readily amenable to phage-based DNA and protein packaging, expression, and display systems due to its physical resiliency and genomic flexibility. As a large dsDNA phage with dispensable internal proteins and dispensable outer capsid proteins it can be adapted to package both DNA and proteins of interest within the capsid and to display peptides and proteins externally on the capsid. A single 170 kb linear DNA, or single or multiple copies of shorter linear DNAs, of any sequence can be packaged by the large terminase subunit in vitro into protein-containing proheads and give full or partially full capsids.

View Article and Find Full Text PDF

Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal-terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279-316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily.

View Article and Find Full Text PDF

Pseudomonas aeruginosa myovirus KZ has a 270-kb genome within a T=27 icosahedral capsid that contains a large, unusual, and structurally well-defined protein cylindrical inner body (IB) spanning its interior. Proteolysis forms a pivotal stage in KZ head and IB morphogenesis, with the protease gp175 cleaving at least 19 of 49 different head proteins, including the major capsid protein and five major structural IB proteins. Here we show that the purified mature form of gp175 is active and cleaves purified IB structural proteins gp93 and gp89.

View Article and Find Full Text PDF

Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S.

View Article and Find Full Text PDF

Encased within the 280 kb genome in the capsid of the giant myovirus φKZ is an unusual cylindrical proteinaceous 'inner body' of highly ordered structure. We present here mass spectrometry, bioinformatic and biochemical studies that reveal novel information about the φKZ head and the complex inner body. The identification of 39 cleavage sites in 19 φKZ head proteins indicates cleavage of many prohead proteins forms a major morphogenetic step in φKZ head maturation.

View Article and Find Full Text PDF

The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head.

View Article and Find Full Text PDF

Large, tailed dsDNA-containing bacteriophage genomes are packaged to a conserved and high density (∼500 mg/ml), generally in ∼2.5-nm, duplex-to-duplex, spaced, organized DNA shells within icosahedral capsids. Phages with these condensate properties, however, differ markedly in their inner capsid structures: (1) those with a naked condensed DNA, (2) those with many dispersed unstructured proteins embedded within the DNA, (3) those with a small number of localized proteins, and (4) those with a reduced or DNA-free internal protein structure of substantial volume.

View Article and Find Full Text PDF

Dense packing of macromolecules in cellular compartments and higher-order assemblies makes it difficult to pick out even quite large components in electron micrographs, despite nominally high resolution. Immunogold labeling and histochemical procedures offer ways to map certain components but are limited in their applicability. Here, we present a differential mapping procedure, based on the physical principle of protein's greater sensitivity to radiation damage compared with that of nucleic acid.

View Article and Find Full Text PDF

Conserved bacteriophage ATP-based DNA translocation motors consist of a multimeric packaging terminase docked onto a unique procapsid vertex containing a portal ring. DNA is translocated into the empty procapsid through the portal ring channel to high density. In vivo the T4 phage packaging motor deals with Y- or X-structures in the replicative concatemer substrate by employing a portal-bound Holliday junction resolvase that trims and releases these DNA roadblocks to packaging.

View Article and Find Full Text PDF

The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined.

View Article and Find Full Text PDF

Many large double-stranded DNA viruses employ high force-generating ATP-driven molecular motors to package to high density their genomes into empty procapsids. Bacteriophage T4 DNA translocation is driven by a two-component motor consisting of the procapsid portal docked with a packaging terminase-ATPase. Fluorescence resonance energy transfer and fluorescence correlation spectroscopic (FRET-FCS) studies of a branched (Y-junction) DNA substrate with a procapsid-anchoring leader segment and a single dye molecule situated at the junction point reveal that the "Y-DNA" stalls in proximity to the procapsid portal fused to GFP.

View Article and Find Full Text PDF

Linear DNAs of any sequence can be packaged into empty viral procapsids by the phage T4 terminase with high efficiency in vitro. Packaging substrates of 5 kbp and 50 kbp, terminated by energy transfer dye pairs, were constructed from plasmid and lambda phage DNAs. Nuclease and fluorescence correlation spectroscopy (FCS) assays showed that approximately 20% of the substrate DNA was packaged and that the DNA dye ends of the packaged DNA were protected from nuclease digestion.

View Article and Find Full Text PDF

Bacteriophage T4 terminase packages DNA in vitro into empty small or large proheads (esps or elps). In vivo maturation of esps yields the more stable and voluminous elps required to contain the 170 kb T4 genome. Functional proheads can be assembled containing portal-GFP fusion proteins.

View Article and Find Full Text PDF

Bacteriophage terminases package DNA through the portal ring of a procapsid during phage maturation. We have probed the mechanism of the phage T4 large terminase subunit gp17 by analyzing linear DNAs that are translocated in vitro. Duplex DNAs of random sequence from 20 to 500 bp were efficiently packaged.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2nlpmfuv0g1irrv7o1qlt0bnut9mpaj3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once