Publications by authors named "Lindsay Schneider"

The aim of this research is to present a new method to identify and separate target DNA of the same size, in base pairs (bp), into different sizes based on the targeted sequences. This sequence-specific analysis can then be used to evaluate the presence of multiple targeted analytes in a sample without the need for fluorescence detection. This work displays the feasibility of this method using multiple different 150 bp target sequences separated via microfluidic electrophoresis into 230 bp to 330 bp peaks.

View Article and Find Full Text PDF

Next generation sequencing (NGS) technology has revolutionized the field of personalized medicine through providing patient specific diagnostic information on a nucleic acid level. A key bottleneck in the NGS workflow is the preparation of nucleic acids for sequencing, or library preparation. One approach to overcoming this bottleneck on time and resources is through automating library preparation as much as possible from the stage of DNA extraction to a sequence-ready sample.

View Article and Find Full Text PDF

COVID-19 is an infectious disease that caused a global pandemic affecting people worldwide. As disease detection and vaccine rollout continue to progress, there is still a need for efficient diagnostic tools to satisfy continued testing needs. This preliminary study evaluated a novel SARS-CoV-2 diagnostic test called DirectDetect SARS-CoV-2 Direct Real-time reverse transcriptase polymerase chain reaction (RT-PCR) based on a limited sample size of 24 respiratory samples from 14 SARS-CoV-2-positive patients.

View Article and Find Full Text PDF

Objectives: Increase the yield and purity of cell-free DNA (cfDNA) extracted from plasma for non-invasive prenatal testing (NIPT) as inefficiencies in this extraction and purification can dramatically affect the sensitivity and specificity of the test.

Methods: This work integrates cfDNA extraction from plasma with a microfluidic chip platform by combining magnetic bead-based extraction and electroosmotic flow on the microfluidic chip. Various wash buffers and voltage conditions were simulated using COMSOL Multiphysics Modeling and tested experimentally.

View Article and Find Full Text PDF

Aneuploidy is caused by problems during cellular division and segregation errors during meiosis that lead to an abnormal number of chromosomes and initiate significant genetic abnormalities during pregnancy or the loss of a fetus due to miscarriage. Screening and diagnostic technologies have been developed to detect this genetic condition and provide parents with critical information about their unborn child. In this review, we highlight the complexities of aneuploidy as a disease as well as multiple technological advancements in testing that help to identify aneuploidy at various time points throughout pregnancy.

View Article and Find Full Text PDF

The advent and dissemination of next-generation sequencing (NGS) technologies such as Illumina's sequencing platforms has brought forth vast reductions in the cost, time, and technical difficulties associated with DNA and RNA sequencing. Despite this trend, the workflow required to generate nucleic acid libraries for sequencing remains time-consuming and laborious. The following research proposes a method for simplifying and streamlining this process by replacing the manual washing steps of the common magnetic bead-based cleanup with a novel microfluidic method by integrating magnetic separation and electrokinetic purification (MSEP).

View Article and Find Full Text PDF

In many situations, cells migrate through tiny orifices. Examples include the extravasation of immune cells from the bloodstream for fighting infections, the infiltration of cancer cells during metastasis, and the migration of human pathogens. An extremely motile and medically relevant type of human pathogen is .

View Article and Find Full Text PDF

Nucleic acid sample preparation is essential for biological sample-based diagnostics. It is crucial that diagnostic tests be both specific and sensitive as to provide the most accurate diagnosis possible. Inefficient sample preparation can hinder the specificity and sensitivity of these tests since carryover contaminants can inhibit downstream processes, such as amplification.

View Article and Find Full Text PDF

Loop mediated isothermal amplification (LAMP) is a nucleic acid amplification technique performed under isothermal conditions. The output of this amplification technique includes multiple different sizes of deoxyribonucleic acid (DNA) structures which are identified by a banding pattern on gel electrophoresis plots. Although this is a specific amplification technique, the complexity of the primer design and amplification still lead to the issue of obtaining false-positive results, especially when a positive reading is determined solely by whether there is any banding pattern in the gel electrophoresis plot.

View Article and Find Full Text PDF

We conducted an evidence-based practice project to determine if skin-to-skin contact immediately after cesarean birth influenced the rate of transfer of newborns to the NICU for observation. We analyzed data for 5 years (2011 through 2015) and compared the rates for the period before implementation of skin-to-skin contact with rates for the period after. The proportion of newborns transferred to the NICU for observation was significantly different and lower after implementing skin-to-skin contact immediately after cesarean birth (Pearson's χ = 32.

View Article and Find Full Text PDF

Hepatic vasculature is not thought to pose a permeability barrier for diffusion of macromolecules from the bloodstream to hepatocytes. In contrast, in extrahepatic tissues, the microvasculature is critically important for insulin action, because transport of insulin across the endothelial cell layer is rate limiting for insulin-stimulated glucose disposal. However, very little is known concerning the role in this process of pericytes, the mural cells lining the basolateral membrane of endothelial cells.

View Article and Find Full Text PDF