Publications by authors named "Lindsay R Merte"

We have used grazing incidence X-ray absorption near edge spectroscopy (XANES) to investigate the behavior of monolayer FeO films on Pt(111) under near ambient pressure CO oxidation conditions with a total gas pressure of 1 bar. Spectra indicate reversible changes during oxidation and reduction by O and CO at 150 °C, attributed to a transformation between FeO bilayer and FeO trilayer phases. The trilayer phase is also reduced upon heating in CO+O , consistent with a Mars-van-Krevelen type mechanism for CO oxidation.

View Article and Find Full Text PDF

The catalytic oxidation of CO and CH can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide.

View Article and Find Full Text PDF

InO-based catalysts have shown high activity and selectivity for CO hydrogenation to methanol; however, the origin of the high performance of InO is still unclear. To elucidate the initial steps of CO hydrogenation over InO, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO on the InO(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature.

View Article and Find Full Text PDF

Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution.

View Article and Find Full Text PDF

Zn Sn O (ZTO) deposited by atomic layer deposition has shown promising results as a buffer layer material for kesterite CuZnSnS (CZTS) thin film solar cells. Increased performance was observed when a ZTO buffer layer was used as compared to the traditional CdS buffer, and the performance was further increased after an air annealing treatment of the absorber. In this work, we study how CZTS absorber surface treatments may influence the chemical and electronic properties at the ZTO/CZTS interface and the reactions that may occur at the absorber surface prior to atomic layer deposition of the buffer layer.

View Article and Find Full Text PDF

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces.

View Article and Find Full Text PDF

Determination of the atomic structure of solid surfaces typically depends on comparison of measured properties with simulations based on hypothesized structural models. For simple structures, the models may be guessed, but for more complex structures there is a need for reliable theory-based search algorithms. So far, such methods have been limited by the combinatorial complexity and computational expense of sufficiently accurate energy estimation for surfaces.

View Article and Find Full Text PDF

We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study.

View Article and Find Full Text PDF

Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal.

View Article and Find Full Text PDF

The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction.

View Article and Find Full Text PDF

We have investigated the structure of an ultrathin iron oxide phase grown on Ag(100) using surface x-ray diffraction in combination with Hubbard-corrected density functional theory (DFT+U) calculations. The film exhibits a novel structure composed of one close-packed layer of octahedrally coordinated Fe sandwiched between two close-packed layers of tetrahedrally coordinated Fe and an overall stoichiometry of FeO. As the structure is distinct from bulk iron oxide phases and the coupling with the silver substrate is weak, we propose that the phase should be classified as a metastable two-dimensional oxide.

View Article and Find Full Text PDF

Understanding nanoparticle catalysis requires novel approaches in which adjoining crystal orientations can be studied under the same reactive conditions. Here we use a curved palladium crystal and near-ambient pressure X-ray photoemission spectroscopy to characterize chemical species during the catalytic oxidation of CO in a whole set of surfaces vicinal to the (111) direction simultaneously. By stabilizing the reaction at fixed temperatures around the ignition point, we observe a strong variation of the catalytic activity across the curved surface.

View Article and Find Full Text PDF

CO reduction reactions, which provide one route to limit the emission of this greenhouse gas, are commonly performed over Cu-based catalysts. Here, we use ambient pressure X-ray photoelectron spectroscopy together with density functional theory to obtain an atomistic understanding of the dissociative adsorption of CO on Cu(100). We find that the process is dominated by the presence of steps, which promote both a lowering of the dissociation barrier and an efficient separation between adsorbed O and CO, reducing the probability for recombination.

View Article and Find Full Text PDF

Using surface x-ray diffraction (SXRD), quantitative low-energy electron diffraction (LEED), and density-functional theory (DFT) calculations, we have determined the structure of the (4×1) reconstruction formed by sputtering and annealing of the SnO_{2}(110) surface. We find that the reconstruction consists of an ordered arrangement of Sn_{3}O_{3} clusters bound atop the bulk-terminated SnO_{2}(110) surface. The model was found by application of a DFT-based evolutionary algorithm with surface compositions based on SXRD, and shows excellent agreement with LEED and with previously published scanning tunneling microscopy measurements.

View Article and Find Full Text PDF

Motivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures.

View Article and Find Full Text PDF

SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator.

View Article and Find Full Text PDF

Ultrathin metal oxides exhibit unique chemical properties and show promise for applications in heterogeneous catalysis. Monolayer FeO films supported on metal surfaces show large differences in reactivity depending on the metal substrate, potentially enabling tuning of the catalytic properties of these materials. Nitric oxide (NO) adsorption is facile on silver-supported FeO, whereas a similar film grown on platinum is inert to NO under similar conditions.

View Article and Find Full Text PDF

We study the structure-function relationship of alumina supported platinum during the formation of ammonia from nitrogen oxide and dihydrogen by employing in situ X-ray absorption and Fourier transform infrared spectroscopy. Particular focus has been directed towards the effect of oxygen on the reaction as a model system for emerging technologies for passive selective catalytic reduction of nitrogen oxides. The suppressed formation of ammonia observed as the feed becomes net-oxidizing is accompanied by a considerable increase in the oxidation state of platinum as well as the formation of surface nitrates and the loss of NH-containing surface species.

View Article and Find Full Text PDF

In an attempt to bridge the material and pressure gaps - two major challenges for an atomic scale understanding of heterogeneous catalysis - we employed high-energy surface X-ray diffraction as a tool to study the Pd(553) surface in situ under changing reaction conditions during CO oxidation. The diffraction patterns recorded under CO rich reaction conditions are characteristic for the metallic state of the surface. In an environment with low excess of O2 over the reaction stoichiometry, the surface seems to accommodate oxygen atoms along the steps forming one or several subsequent adsorbate structures and rapidly transforms into a combination of (332), (111) and (331) facets likely providing the room for the formation of a surface oxide.

View Article and Find Full Text PDF

Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system.

View Article and Find Full Text PDF

Within the area of surface science, one of the "holy grails" is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described.

View Article and Find Full Text PDF

We used high-resolution scanning tunneling microscopy to study the structure of ultrathin FeO islands grown on Pt(111). Our focus is particularly on the edges of the FeO islands that are important in heterogeneous catalysis, as they host the active sites on inversed catalysts. To imitate various reaction environments we studied pristine, oxidized, and reduced FeO islands.

View Article and Find Full Text PDF

The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups.

View Article and Find Full Text PDF