Publications by authors named "Lindsay Primrose"

To assess their roles in breast cancer diagnostics, we aimed to compare plasma cell-free DNA (cfDNA) levels with the circulating metabolome in a large breast screening cohort of women recalled for mammography, including healthy women and women with mammographically detected breast diseases, ductal carcinoma in situ and invasive breast cancer: the Breast Screening and Monitoring Study (BSMS). In 999 women, plasma was analyzed by nuclear magnetic resonance (NMR) and Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and then processed to isolate and quantify total cfDNA. NMR and UPLC-MS results were compared with data for 186 healthy women derived from the AIRWAVE cohort.

View Article and Find Full Text PDF

Purpose: We investigated the utility of the Oncomine Breast cfDNA Assay for detecting circulating tumor DNA (ctDNA) in women from a breast screening population, including healthy women with no abnormality detected by mammogram, and women on follow-up through to advanced breast cancer.

Materials And Methods: Blood samples were taken from 373 women (127 healthy controls recruited through breast screening, 28 ductal carcinoma in situ, 60 primary breast cancers, 47 primary breast cancer on follow-up, and 111 metastatic breast cancers [MBC]) to recover plasma and germline DNA for analysis with the Oncomine Breast cfDNA Assay on the Ion S5 platform.

Results: One hundred sixteen of 373 plasma samples had one or more somatic variants detected across eight of the 10 genes and were called ctDNA-positive; MBC had the highest proportion of ctDNA-positive samples (61; 55%) and healthy controls the lowest (20; 15.

View Article and Find Full Text PDF

Purpose: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer.

View Article and Find Full Text PDF
Article Synopsis
  • More than 30% of women with a type of breast cancer called ERα still get worse even after treatment.
  • A protein called PBX1 is important for how cancer cells respond to signals that make them grow and can help identify patients who are likely to have more aggressive cancer.
  • High levels of PBX1 are linked to quicker cancer spreading and worse survival rates, and testing for this protein in blood could help doctors understand how serious the cancer is.
View Article and Find Full Text PDF

Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA) and microRNAs (miRNAs). Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates.

View Article and Find Full Text PDF