Despite the use of model species to predict the effects of chemicals in the environment, unpredicted variation in levels of risk to organisms from xenobiotics can be observed. Physiological and morphological differences between species and life stages may lead to differences in sensitivity, while seasonal and spatial variation in pesticide concentrations may affect the level of risk faced by organisms in the environment. Because anurans breed in aquatic habitats subject to contamination by runoff and spraying, they are particularly vulnerable to pesticides.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2011
Global declines in biodiversity are altering disease dynamics in complex and multifaceted ways. Changes in biodiversity can have several outcomes on disease risk, including dilution and amplification effects, both of which can have a profound influence on the effects of disease in a community. The dilution effect occurs when biodiversity and disease risk are inversely related, whereas the amplification effect is a positive relationship between biodiversity and disease risk.
View Article and Find Full Text PDFUltraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals.
View Article and Find Full Text PDF