Publications by authors named "Lindsay L Ejoh"

The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive.

View Article and Find Full Text PDF

The basolateral amygdala (BLA) is essential for assigning positive or negative valence to sensory stimuli. Noxious stimuli that cause pain are encoded by an ensemble of ceptive BLA projection neurons (BLA ensemble). However, the role of the BLA ensemble in mediating behavior changes and the molecular signatures and downstream targets distinguishing this ensemble remain poorly understood.

View Article and Find Full Text PDF

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice.

View Article and Find Full Text PDF

Visceral pain is a prevalent symptom of inflammatory bowel disease that can be difficult to treat. Pain and hypersensitivity are mediated by extrinsic primary afferent neurons (ExPANs) that innervate the colon. Recent studies indicate that the colon epithelium contributes to initiating ExPAN firing and nociceptive responses.

View Article and Find Full Text PDF

Background & Aims: The colon is innervated by intrinsic and extrinsic neurons that coordinate functions necessary for digestive health. Sympathetic input suppresses colon motility by acting on intrinsic myenteric neurons, but the extent of sympathetic-induced changes on large-scale network activity in myenteric circuits has not been determined. Compounding the complexity of sympathetic function, there is evidence that sympathetic transmitters can regulate activity in non-neuronal cells (such as enteric glia and innate immune cells).

View Article and Find Full Text PDF