Publications by authors named "Lindsay Hutley"

Several coastal ecosystems-most notably mangroves and tidal marshes-exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs. The persistence of these ecosystems under high rates of RSLR is contested.

View Article and Find Full Text PDF

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied.

View Article and Find Full Text PDF

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.

View Article and Find Full Text PDF

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20 anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling.

View Article and Find Full Text PDF

Background And Aims: Despite the critical role of woody tissues in determining net carbon exchange of terrestrial ecosystems, relatively little is known regarding the drivers of sapwood and bark respiration.

Methods: Using one of the most comprehensive wood respiration datasets to date (82 species from Australian rainforest, savanna and temperate forest), we quantified relationships between tissue respiration rates (Rd) measured in vitro (i.e.

View Article and Find Full Text PDF

Despite their size and contribution to the global carbon cycle, we have limited understanding of tropical savannas and their current trajectory with climate change and anthropogenic pressures. Here we examined interannual variability and externally forced long-term changes in carbon and water exchange from a high rainfall savanna site in the seasonal tropics of north Australia. We used an 18-year flux data time series (2001-2019) to detect trends and drivers of fluxes of carbon and water.

View Article and Find Full Text PDF

This study investigates the underlying climate processes behind the largest recorded mangrove dieback event along the Gulf of Carpentaria coast in northern Australia in late 2015. Using satellite-derived fractional canopy cover (FCC), variation of the mangrove canopies during recent decades are studied, including a severe dieback during 2015-2016. The relationship between mangrove FCC and climate conditions is examined with a focus on the possible role of the 2015-2016 El Niño in altering favorable conditions sustaining the mangroves.

View Article and Find Full Text PDF

Globally, forests are facing an increasing risk of mass tree mortality events associated with extreme droughts and higher temperatures. Hydraulic dysfunction is considered a key mechanism of drought-triggered dieback. By leveraging the climate breadth of the Australian landscape and a national network of research sites (Terrestrial Ecosystem Research Network), we conducted a continental-scale study of physiological and hydraulic traits of 33 native tree species from contrasting environments to disentangle the complexities of plant response to drought across communities.

View Article and Find Full Text PDF

Mangrove ecosystems can be both significant sources and sinks of greenhouse gases (GHGs). Understanding variability in flux and the key factors controlling emissions in these ecosystems are therefore important in the context of accounting for GHG emissions. The current study is the first to quantify GHG emissions using static chamber measurements from soils in disused aquaculture ponds, planted mangroves, and mature mangroves from the Ayeyarwady Delta, Myanmar.

View Article and Find Full Text PDF

The magnitude of the terrestrial carbon (C) sink may be overestimated globally due to the difficulty of accounting for all C losses across heterogeneous landscapes. More complete assessments of net landscape C balances (NLCB) are needed that integrate both emissions by fire and transfer to aquatic systems, two key loss pathways of terrestrial C. These pathways can be particularly significant in the wet-dry tropics, where fire plays a fundamental part in ecosystems and where intense rainfall and seasonal flooding can result in considerable aquatic C export (ΣF ).

View Article and Find Full Text PDF
Article Synopsis
  • - The FLUXNET2015 dataset encompasses ecosystem-scale data on carbon dioxide, water, and energy exchange, collected from 212 global sites contributing over 1500 site-years of data until 2014.
  • - The dataset was systematically quality controlled and processed, facilitating consistency for various applications in ecophysiology, remote sensing, and ecosystem modeling.
  • - For the first time, derived data products such as time series, ecosystem respiration, and photosynthesis estimates are included, and 206 sites are made accessible under a Creative Commons license, with the processing methods available as open-source codes.
View Article and Find Full Text PDF

As tropical savannas are undergoing rapid conversion to other land uses, native C -C vegetation mixtures are often transformed to C - or C -dominant systems, resulting in poorly understood changes to the soil carbon (C) cycle. Conventional models of the soil C cycle are based on assumptions that more labile components of the heterogenous soil organic C (SOC) pool decompose at faster rates. Meanwhile, previous work has suggested that the C -derived component of SOC is more labile than C -derived SOC.

View Article and Find Full Text PDF

Globally, carbon-rich mangrove forests are deforested and degraded due to land-use and land-cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area.

View Article and Find Full Text PDF

Globally, mining activities have been responsible for the contamination of soils, surface water and groundwater. Following mine closure, a key issue is the management of leachate from waste rock accumulated during the lifetime of the mine. At Ranger Uranium Mine in northern Australia, magnesium sulfate (MgSO) leaching from waste rock has been identified as a potentially significant surface and groundwater contaminant which may have adverse affects on catchment biota.

View Article and Find Full Text PDF

Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils).

View Article and Find Full Text PDF

Mangroves shift from carbon sinks to sources when affected by anthropogenic land-use and land-cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes.

View Article and Find Full Text PDF

Mangrove forests are extremely productive, with rates of growth rivaling some terrestrial tropical rainforests. However, our understanding of the full suite of processes underpinning carbon exchange with the atmosphere and near shore-waters, the allocation of carbon in mangroves, and fluxes of non-CO greenhouse gases (GHGs) are limited to a handful of studies. This constrains the scientific basis from which to advocate for greater support for and investment in mangrove restoration and conservation.

View Article and Find Full Text PDF

Termites are responsible for ∼1 to 3% of global methane (CH) emissions. However, estimates of global termite CH emissions span two orders of magnitude, suggesting that fundamental knowledge of CH turnover processes in termite colonies is missing. In particular, there is little reliable information on the extent and location of microbial CH oxidation in termite mounds.

View Article and Find Full Text PDF

To date, discourse associated with the potential application of "blue carbon" within real-world carbon markets has focused on blue carbon as a mitigation strategy in the context of avoided deforestation (e.g., REDD+).

View Article and Find Full Text PDF

The loss and degradation of mangroves can result in potentially significant sources of atmospheric greenhouse gas (GHG) emissions. For mangrove rehabilitation carbon projects, quantifying GHG emissions as forests regenerate is a key accounting requirement. The current study is one of the first attempts to systematically quantify emissions of carbon dioxide (CO), nitrous oxide (NO) and methane (CH) from: 1) aquaculture ponds, 2) rehabilitating mangroves, and 3) intact mangrove sites and frame GHG flux within the context of landuse change.

View Article and Find Full Text PDF
Article Synopsis
  • Andropogon gayanus, an invasive grass in Australia's tropical savannas, increases fire intensity and adult woody plant mortality.
  • The invasion alters microclimate conditions, reducing light and increasing temperatures, which negatively impacts the growth and survival of Eucalyptus seedlings.
  • As a result, the overall recruitment potential of woody plants is diminished, leading to a shift from savanna to grassland ecosystems.
View Article and Find Full Text PDF

Tree-grass savannas are a widespread biome and are highly valued for their ecosystem services. There is a need to understand the long-term dynamics and meteorological drivers of both tree and grass productivity separately in order to successfully manage savannas in the future. This study investigated the interannual variability (IAV) of tree and grass gross primary productivity (GPP) by combining a long-term (15 year) eddy covariance flux record and model estimates of tree and grass GPP inferred from satellite remote sensing.

View Article and Find Full Text PDF

Non-forest ecosystems (predominant in semi-arid and arid regions) contribute significantly to the increasing trend and interannual variation of land carbon uptake over the last three decades, yet the mechanisms are poorly understood. By analysing the flux measurements from 23 ecosystems in Australia, we found the the correlation between gross primary production (GPP) and ecosystem respiration (R) was significant for non-forest ecosystems, but was not for forests. In non-forest ecosystems, both GPP and R increased with rainfall, and, consequently net ecosystem production (NEP) increased with rainfall.

View Article and Find Full Text PDF

Ecosystem monitoring networks aim to collect data on physical, chemical and biological systems and their interactions that shape the biosphere. Here we introduce the Australian SuperSite Network that, along with complementary facilities of Australia's Terrestrial Ecosystem Research Network (TERN), delivers field infrastructure and diverse, ecosystem-related datasets for use by researchers, educators and policy makers. The SuperSite Network uses infrastructure replicated across research sites in different biomes, to allow comparisons across ecosystems and improve scalability of findings to regional, continental and global scales.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlfjpii9ic2dap5hiqfn990mtgfq2qpdo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once