Studies of RNA recognition and catalysis typically involve measurement of rate constants for reactions of individual RNA sequence variants by fitting changes in substrate or product concentration to exponential or linear functions. A complementary approach is determination of relative rate constants by internal competition, which involves quantifying the time-dependent changes in substrate or product ratios in reactions containing multiple substrates. Here, we review approaches for determining relative rate constants by analysis of both substrate and product ratios and illustrate their application using the in vitro processing of precursor transfer RNA (tRNA) by ribonuclease P as a model system.
View Article and Find Full Text PDFNucleic-acid-binding proteins are generally viewed as either specific or nonspecific, depending on characteristics of their binding sites in DNA or RNA. Most studies have focused on specific proteins, which identify cognate sites by binding with highest affinities to regions with defined signatures in sequence, structure or both. Proteins that bind to sites devoid of defined sequence or structure signatures are considered nonspecific.
View Article and Find Full Text PDFA single enzyme, ribonuclease P (RNase P), processes the 5' ends of tRNA precursors (ptRNA) in cells and organelles that carry out tRNA biosynthesis. This substrate population includes over 80 different competing ptRNAs in Escherichia coli. Although the reaction kinetics and molecular recognition of a few individual model substrates of bacterial RNase P have been well described, the competitive substrate kinetics of the enzyme are comparatively unexplored.
View Article and Find Full Text PDFThe RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis.
View Article and Find Full Text PDFWe have been examining the mechanism and kinetics of the interactions of a selected set of peptides with phospholipid membranes in a quantitative manner. This set was chosen to cover a broad range of physical-chemical properties and cell specificities. Mastoparan (masL) and mastoparan X (masX) are two similar peptides from the venoms of the wasps Vespula lewisii and Vespa xanthoptera, respectively, and were chosen to complete the set.
View Article and Find Full Text PDFThe kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan.
View Article and Find Full Text PDFThe mechanism of the interaction between the cell-penetrating peptide transportan 10 (tp10) and phospholipid membranes was investigated. Tp10 induces graded release of the contents of phospholipid vesicles. The kinetics of peptide association with vesicles and peptide-induced dye efflux from the vesicle lumen were examined experimentally by stopped-flow fluorescence.
View Article and Find Full Text PDFThe kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin from vesicles of porcine brain sphingomyelin (BSM), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol (Chol) were investigated as a function of temperature and composition. Sphingomyelin (SM)/Chol mixtures form a liquid-ordered (L(o)) phase whereas POPC exists in the liquid-disordered (L(d)) phase at ambient temperature. delta-Lysin binds strongly to L(d) and poorly to L(o) phase.
View Article and Find Full Text PDF