Publications by authors named "Lindsay E King"

Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH.

View Article and Find Full Text PDF

Characterization of target abundance on cells has broad translational applications. Among the approaches for assessing membrane target expression is quantification of the number of target-specific antibody (Ab) bound per cell (ABC). ABC determination on relevant cell subsets in complex and limited biological samples necessitates multidimensional immunophenotyping, for which the high-order multiparameter capabilities of mass cytometry provide considerable advantages.

View Article and Find Full Text PDF

Purpose: Gastrointestinal cancers remain areas of high unmet need despite advances in targeted and immunotherapies. Here, we demonstrate potent, tumor-selective efficacy with PF-07062119, a T-cell engaging CD3 bispecific targeting tumors expressing Guanylyl Cyclase C (GUCY2C), which is expressed widely across colorectal cancer and other gastrointestinal malignancies. In addition, to address immune evasion mechanisms, we explore combinations with immune checkpoint blockade agents and with antiangiogenesis therapy.

View Article and Find Full Text PDF

Monoclonal antibody (mAb) pharmacokinetics (PK) have largely been predicted via allometric scaling with little consideration for cross-species differences in neonatal Fc receptor (FcRn) affinity or clearance/distribution mechanisms. To address this, we developed a mAb physiologically-based PK model that describes the intracellular trafficking and FcRn recycling of mAbs in a human FcRn transgenic homozygous mouse and human. This model uses mAb-specific in vitro data together with species-specific FcRn tissue expression, tissue volume, and blood-flow physiology to predict mAb in vivo linear PK a priori.

View Article and Find Full Text PDF

There are many sources of analytical variability in ligand binding assays (LBA). One strategy to reduce variability has been duplicate analyses. With recent advances in LBA technologies, it is conceivable that singlet analysis is possible.

View Article and Find Full Text PDF

A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model was used for preclinical to clinical translation of inotuzumab ozogamicin, a CD22-targeting antibody-drug conjugate (ADC) for B cell malignancies including non-Hodgkin's lymphoma (NHL) and acute lymphocytic leukemia (ALL). Preclinical data was integrated in a PK/PD model which included (1) a plasma PK model characterizing disposition and clearance of inotuzumab ozogamicin and its released payload N-Ac-γ-calicheamicin DMH, (2) a tumor disposition model describing ADC diffusion into the tumor extracellular environment, (3) a cellular model describing inotuzumab ozogamicin binding to CD22, internalization, intracellular N-Ac-γ-calicheamicin DMH release, binding to DNA, or efflux from the tumor cell, and (4) tumor growth and inhibition in mouse xenograft models. The preclinical model was translated to the clinic by incorporating human PK for inotuzumab ozogamicin and clinically relevant tumor volumes, tumor growth rates, and values for CD22 expression in the relevant patient populations.

View Article and Find Full Text PDF

A mathematical model capable of accurately characterizing intracellular disposition of ADCs is essential for a priori predicting unconjugated drug concentrations inside the tumor. Towards this goal, the objectives of this manuscript were to: (1) evolve previously published cellular disposition model of ADC with more intracellular details to characterize the disposition of T-DM1 in different HER2 expressing cell lines, (2) integrate the improved cellular model with the ADC tumor disposition model to a priori predict DM1 concentrations in a preclinical tumor model, and (3) identify prominent pathways and sensitive parameters associated with intracellular activation of ADCs. The cellular disposition model was augmented by incorporating intracellular ADC degradation and passive diffusion of unconjugated drug across tumor cells.

View Article and Find Full Text PDF

The objective of antibody-drug conjugate (ADC) bioanalysis at different stages of drug development may vary and so are the associated bioanalytical challenges. While at early drug discovery stage involving candidate selection, optimization and preliminary nonclinical assessments, the goal of ADC bioanalysis is to provide PK, toxicity and efficacy data that assists in the design and selection of potential drug candidates, the late nonclinical and clinical drug development stage typically involves regulated ADC bioanalysis that delivers TK data to define and understand pharmacological and toxicological properties of the lead ADC candidate. Bioanalytical strategies and considerations involved in developing successful ligand binding assays for ADC characterization from early discovery to late nonclinical stages of drug development are presented here.

View Article and Find Full Text PDF

The L4 Global Harmonization Team on reagents and their stability focused on the management of critical reagents for pharmacokinetic, immunogenicity, and biomarker ligand binding assays. Regulatory guidance recognizes that reagents are important for ligand binding assays but do not address numerous aspects of critical reagent life cycle management. Reagents can be obtained from external vendors or developed internally, but regardless of their source, there are numerous considerations for their reliable long-term use.

View Article and Find Full Text PDF

The objectives of this investigation were as follows: (a) to validate a mechanism-based pharmacokinetic (PK) model of ADC for its ability to a priori predict tumor concentrations of ADC and released payload, using anti-5T4 ADC A1mcMMAF, and (b) to analyze the PK model to find out main pathways and parameters model outputs are most sensitive to. Experiential data containing biomeasures, and plasma and tumor concentrations of ADC and payload, following A1mcMMAF administration in two different xenografts, were used to build and validate the model. The model performed reasonably well in terms of a priori predicting tumor exposure of total antibody, ADC, and released payload, and the exposure of released payload in plasma.

View Article and Find Full Text PDF

Continuous improvement in bioanalytical method development is desired in order to ensure the quality of the data and to better support pharmacokinetic (PK) and safety studies of biotherapeutics. One area that has been getting increasing attention recently is in the assessment of "free" and "total" analyte and the impact of the assay format on those assessments. To compliment these considerations, the authors provide a critical review of available literature and prospectively explore methods to mitigate the potential impact of anti-drug antibody on PK assay measurement.

View Article and Find Full Text PDF

Bio-layer interferometry (BLI) is a label-free technology that can be used for kinetic characterization of proteins. Although other label-free platforms have been used for quantitation purposes (most notably surface plasmon resonance), little work has been done using BLI. Here we present rationale and strategies for the development and analytical qualification of a BLI assay for the quantitation of a humanized antibody therapeutic in cynomolgus monkey plasma.

View Article and Find Full Text PDF

The predominant driver of bioanalysis in supporting drug development is the intended use of the data. Ligand-binding assays (LBA) are widely used for the analysis of protein biotherapeutics and target ligands (L) to support pharmacokinetics/pharmacodynamics (PK/PD) and safety assessments. For monoclonal antibody drugs (mAb), in particular, which non-covalently bind to L, multiple forms of mAb and L can exist in vivo, including free mAb, free L, and mono- and/or bivalent complexes of mAb and L.

View Article and Find Full Text PDF