Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated proteinaceous aggregates in the globus pallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons.
View Article and Find Full Text PDFAlzheimer's disease (AD) is an incurable age-related neurodegenerative disorder characterized by profound memory dysfunction. This bellwether symptom suggests involvement of the hippocampus -- a brain region responsible for memory formation -- and coincidentally an area heavily burdened by hyperphosphorylated tau and neuritic plaques of amyloid beta (Aβ). Recent evidence suggests that pre-fibrillar soluble Aβ underlies an early, progressive loss of synapses that is a hallmark of AD.
View Article and Find Full Text PDFBackground: Early cognitive impairment in Alzheimer Disease (AD) is thought to result from the dysfunctional effect of amyloid beta (Aβ) oligomers targeting the synapses. Some individuals, however, escape cognitive decline despite the presence of the neuropathologic features of AD (Aβ plaques and neurofibrillary tangles). We term this group Non-Demented with AD Neuropathology or NDAN.
View Article and Find Full Text PDFIntracellular deposition of fibrillar aggregates of α-synuclein (αSyn) characterizes neurodegenerative diseases such as Parkinson's disease (PD) and dementia with Lewy bodies. However, recent evidence indicates that small αSyn oligomeric aggregates that precede fibril formation may be the most neurotoxic species and can be found extracellularly. This new evidence has changed the view of pathological αSyn aggregation from a self-contained cellular phenomenon to an extracellular event and prompted investigation of the putative effects of extracellular αSyn oligomers.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive, neurodegenerative disorder and the most prevalent senile dementia. The early symptom of memory dysfunction involves synaptic loss, thought to be mediated by soluble amyloid-beta (Aβ) oligomers. These aggregate species target excitatory synapses and their levels correlate with disease severity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder which first manifests as profound memory dysfunction. The majority of cases are idiopathic, although advanced age is the greatest risk factor for AD. Recent evidence suggests that pre-fibrillar soluble amyloid-beta (Aβ) underlies an early, progressive loss of synapses that is a hallmark of AD.
View Article and Find Full Text PDFSoluble oligomeric aggregates of the amyloid-beta (A beta) peptide are believed to be the most neurotoxic A beta species affecting the brain in Alzheimer disease (AD), a terminal neurodegenerative disorder involving severe cognitive decline underscored by initial synaptic dysfunction and later extensive neuronal death in the CNS. Recent evidence indicates that A beta oligomers are recruited at the synapse, oppose expression of long-term potentiation (LTP), perturb intracellular calcium balance, disrupt dendritic spines, and induce memory deficits. However, the molecular mechanisms behind these outcomes are only partially understood; achieving such insight is necessary for the comprehension of A beta-mediated neuronal dysfunction.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a terminal age-associated dementia characterized by early synaptic dysfunction and late neurodegeneration. Although the presence of plaques of fibrillar aggregates of the amyloid beta peptide (Abeta) is a signature of AD, evidence suggests that the preplaque small oligomeric Abeta promotes both synaptic dysfunction and neuronal death. We found that young Tg2576 transgenic mice, which accumulate Abeta and develop cognitive impairments prior to plaque deposition, have high central nervous system (CNS) activity of calcineurin (CaN), a phosphatase involved in negative regulation of memory function via inactivation of the transcription factor cAMP responsive element binding proteins (CREB), and display CaN-dependent memory deficits.
View Article and Find Full Text PDF