This article highlights key topic areas related to dietary supplements (DSs) and performance-enhancing substances. It also discusses evidence-based resources the medical community can use when discussing high-quality DSs with Servicemembers interested in taking DSs. We briefly overview how DSs are regulated in the United States, discuss problematic categories and issues related to quality, expand upon what are often considered performance-enhancing substances yet sometimes sold as DSs, and then offer solutions to counter the consequences of the dark side of the DS industry.
View Article and Find Full Text PDFTargeting signaling pathways that drive cancer cell migration or proliferation is a common therapeutic approach. A popular experimental technique, the scratch assay, measures the migration and proliferation-driven cell closure of a defect in a confluent cell monolayer. These assays do not measure dynamic effects.
View Article and Find Full Text PDFIntroduction: Antibody-drug conjugates (ADCs) show significant clinical efficacy in the treatment of solid tumors, but a major limitation to their success is poor intratumoral distribution. Adding a carrier dose improves both distribution and overall drug efficacy of ADCs, but the optimal carrier dose has not been outlined for different payload classes.
Objective: In this work, we study two carrier dose regimens: 1) matching payload potency to cellular delivery but potentially not reaching cells farther away from blood vessels, or 2) dosing to tumor saturation but risking a reduction in cell killing from a lower amount of payload delivered per cell.
Antibody-drug conjugates (ADCs) have experienced a surge in clinical approvals in the past five years. Despite this success, a major limitation to ADC efficacy in solid tumors is poor tumor penetration, which leaves many cancer cells untargeted. Increasing antibody doses or co-administering ADC with an unconjugated antibody can improve tumor penetration and increase efficacy when target receptor expression is high.
View Article and Find Full Text PDFSingle cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy, standard dose-response measurements for the potency of targeted kinase inhibitors aggregate populations of cells, obscuring intercellular variations in responses. In this work, we develop an analytical and experimental framework to quantify and model dose responses of individual cancer cells to drugs.
View Article and Find Full Text PDFTuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%.
View Article and Find Full Text PDFFull-spectrum Human Performance Optimization (HPO) is essential for Special Operations Forces (SOF). Adequate hydration is essential to all aspects of performance (physical and cognitive) and recovery. Water losses occur as a result of physical activity and can increase further depending on clothing and environmental conditions.
View Article and Find Full Text PDFSome persistent infections provide a level of immunity that protects against reinfection with the same pathogen, a process referred to as concomitant immunity. To explore the phenomenon of concomitant immunity during Mycobacterium tuberculosis infection, we utilized HostSim, a previously published virtual host model of the immune response following Mtb infection. By simulating reinfection scenarios and comparing with data from non-human primate studies, we propose a hypothesis that the durability of a concomitant immune response against Mtb is intrinsically tied to levels of tissue resident memory T cells (Trms) during primary infection, with a secondary but important role for circulating Mtb-specific T cells.
View Article and Find Full Text PDFThe development of new antibody-drug conjugates (ADCs) has led to the approval of 7 ADCs by the FDA in 4 years. Given the impact of intratumoral distribution on efficacy of these therapeutics, coadministration of unconjugated antibody with ADC has been shown to improve distribution and efficacy of several ADCs in high and moderately expressed tumor target systems by increasing tissue penetration. However, the benefit of coadministration in low expression systems is less clear.
View Article and Find Full Text PDFCells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF).
View Article and Find Full Text PDFTherapeutic antibody development requires selection and engineering of molecules with high affinity and other drug-like biophysical properties. Co-optimization of multiple antibody properties remains a difficult and time-consuming process that impedes drug development. Here we evaluate the use of machine learning to simplify antibody co-optimization for a clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen) and off-target (non-specific) binding.
View Article and Find Full Text PDFHeterogeneity in cell signaling pathways is increasingly appreciated as a fundamental feature of cell biology and a driver of clinically relevant disease phenotypes. Understanding the causes of heterogeneity, the cellular mechanisms used to control heterogeneity, and the downstream effects of heterogeneity in single cells are all key obstacles for manipulating cellular populations and treating disease. Recent advances in genetic engineering, including multiplexed fluorescent reporters, have provided unprecedented measurements of signaling heterogeneity, but these vast data sets are often difficult to interpret, necessitating the use of computational techniques to extract meaning from the data.
View Article and Find Full Text PDFTuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the world's deadliest infectious diseases and remains a significant global health burden. TB disease and pathology can present clinically across a spectrum of outcomes, ranging from total sterilization of infection to active disease. Much remains unknown about the biology that drives an individual towards various clinical outcomes as it is challenging to experimentally address specific mechanisms driving clinical outcomes.
View Article and Find Full Text PDFNeutrophil infiltration into tuberculous granulomas is often associated with higher bacteria loads and severe disease but the basis for this relationship is not well understood. To better elucidate the connection between neutrophils and pathology in primate systems, we paired data from experimental studies with our next generation computational model to identify neutrophil-related factors, including neutrophil recruitment, lifespan, and intracellular bacteria numbers, that drive granuloma-level outcomes. We predict mechanisms underlying spatial organization of neutrophils within granulomas and identify how neutrophils contribute to granuloma dissemination.
View Article and Find Full Text PDFIntratumoral heterogeneity is a leading cause of treatment failure resulting in tumor recurrence. For the antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1), two major types of resistance include changes in human epidermal growth factor receptor 2 (HER2) expression and reduced payload sensitivity, which is often exacerbated by heterogenous HER2 expression and ADC distribution during treatment. ADCs with bystander payloads, such as trastuzumab-monomethyl auristatin E (T-MMAE), can reach and kill adjacent cells with lower receptor expression that cannot be targeted directly with the ADC.
View Article and Find Full Text PDFTuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designing combination therapies by linking a machine-learning model, INDIGO-MTB, which predicts in vitro drug interactions using drug transcriptomics, with a multi-scale model of drug PK/PD and pathogen-immune interactions called GranSim.
View Article and Find Full Text PDFIntroduction: CXCR4 and epidermal growth factor receptor (EGFR) represent two major families of receptors, G-protein coupled receptors and receptor tyrosine kinases, with central functions in cancer. While utilizing different upstream signaling molecules, both CXCR4 and EGFR activate kinases ERK and Akt, although single-cell activation of these kinases is markedly heterogeneous. One hypothesis regarding the origin of signaling heterogeneity proposes that intercellular variations arise from differences in pre-existing intracellular states set by extrinsic noise.
View Article and Find Full Text PDFIntroduction: Mathematical and computational modeling have a long history of uncovering mechanisms and making predictions for biological systems. However, to create a model that can provide relevant quantitative predictions, models must first be calibrated by recapitulating existing biological datasets from that system. Current calibration approaches may not be appropriate for complex biological models because: 1) many attempt to recapitulate only a single aspect of the experimental data (such as a median trend) or 2) Bayesian techniques require specification of parameter priors and likelihoods to experimental data that cannot always be confidently assigned.
View Article and Find Full Text PDFTuberculosis (TB) is a worldwide health problem; successful interventions such as vaccines and treatment require a 2better understanding of the immune response to infection with (Mtb). In many infectious diseases, pathogen-specific T cells that are recruited to infection sites are highly responsive and clear infection. Yet in the case of infection with Mtb, most individuals are unable to clear infection leading to either an asymptomatically controlled latent infection (the majority) or active disease (roughly 5%-10% of infections).
View Article and Find Full Text PDFMathematical models of biological systems need to both reflect and manage the inherent complexities of biological phenomena. Through their versatility and ability to capture behavior at multiple scales, multi-scale models offer a valuable approach. Due to the typically nonlinear and stochastic nature of multi-scale models as well as unknown parameter values, various types of uncertainty are present; thus, effective assessment and quantification of such uncertainty through sensitivity analysis is important.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes.
View Article and Find Full Text PDFTuberculosis (TB) remains as one of the world's deadliest infectious diseases despite the use of standardized antibiotic therapies. Recommended therapy for drug-susceptible TB is up to 6 months of antibiotics. Factors that contribute to lengthy regimens include antibiotic underexposure in lesions due to poor pharmacokinetics (PK) and complex granuloma compositions, but it is difficult to quantify how individual antibiotics are affected by these factors and to what extent these impact treatments.
View Article and Find Full Text PDFObjective: Due to physical demands, Special Operations Forces (SOF) endure changes in body composition, work capacity, and endocrine function. These changes result in energy deficits and sleep deprivation, where sleep averaged 3 hours/ day, independently known to decrease testosterone levels. The use of exogenous testosterone shows increases in lean body mass (LBM) and muscle function in healthy males and reverses cachexia in diseased populations.
View Article and Find Full Text PDF