Publications by authors named "Linden Parkes"

The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures.

View Article and Find Full Text PDF

Despite decades of research, we lack objective diagnostic or prognostic biomarkers of mental health problems. A key reason for this limited progress is a reliance on the traditional case-control paradigm, which assumes that each disorder has a single cause that can be uncovered by comparing average phenotypic values of patient and control samples. Here, we discuss the problematic assumptions on which this paradigm is based and highlight recent efforts that seek to characterize, rather than minimize, the inherent clinical and biological variability that underpins psychiatric populations.

View Article and Find Full Text PDF

Background: Inter-individual variability in neurobiological and clinical characteristics in mental illness is often overlooked by classical group-mean case-control studies. Studies using normative modelling to infer person-specific deviations of grey matter volume have indicated that group means are not representative of most individuals. The extent to which this variability is present in white matter morphometry, which is integral to brain function, remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The text explores the relationship between the brain's structural anatomy and its complex functions, focusing on how the architecture of white matter affects brain activity.
  • It reviews the concept of structure-function coupling (SFC), including methods to measure it and how it varies across different brain regions and cognitive tasks.
  • The paper also discusses the impact of neurological and psychiatric conditions on SFC, suggesting that changes in this relationship can provide insights into disease mechanisms and cognitive performance.
View Article and Find Full Text PDF

Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms.

View Article and Find Full Text PDF

Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological versus artificial computation, including how insights gained from one can translate to the other.

View Article and Find Full Text PDF

The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures.

View Article and Find Full Text PDF

Background: Heavy alcohol use and its associated conditions, such as alcohol use disorder, impact millions of individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved substantially, we still lack models that incorporate whole-brain neuroanatomical, functional, and pharmacological information under one framework.

Methods: Here, we utilized diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in 130 individuals with a high amount of current alcohol use.

View Article and Find Full Text PDF

The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state.

View Article and Find Full Text PDF

Heavy alcohol use and its associated conditions, such as alcohol use disorder (AUD), impact millions of individuals worldwide. While our understanding of the neurobiological correlates of AUD has evolved substantially, we still lack models incorporating whole-brain neuroanatomical, functional, and pharmacological information under one framework. Here, we utilize diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in = 130 individuals with a high amount of current alcohol use.

View Article and Find Full Text PDF

Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological artificial computation, including how insights gained from one can translate to the other.

View Article and Find Full Text PDF

Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains dynamics. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter dynamics in a desired way. We have extensively developed and validated the application of NCT to the human structural connectome.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional case-control research overlooks the individual differences in gray matter volume (GMV) among people with mental illness, focusing instead on group averages.
  • A study analyzing 1,294 individuals with six mental health disorders found that less than 7% of participants with the same diagnosis showed similar GMV deviations in specific brain areas, highlighting significant heterogeneity.
  • However, up to 56% of cases shared common functional networks, suggesting that while individuals may differ in specific brain anomalies, they often exhibit similarities in how these issues affect brain function across various disorders.
View Article and Find Full Text PDF

Schizophrenia is marked by deficits in facial affect processing associated with abnormalities in GABAergic circuitry, deficits also found in first-degree relatives. Facial affect processing involves a distributed network of brain regions including limbic regions like amygdala and visual processing areas like fusiform cortex. Pharmacological modulation of GABAergic circuitry using benzodiazepines like alprazolam can be useful for studying this facial affect processing network and associated GABAergic abnormalities in schizophrenia.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) and pathological gambling (PG) are accompanied by deficits in behavioural flexibility. In reinforcement learning, this inflexibility can reflect asymmetric learning from outcomes above and below expectations. In alternative frameworks, it reflects perseveration independent of learning.

View Article and Find Full Text PDF

Precisely how the anatomical structure of the brain supports a wide range of complex functions remains a question of marked importance in both basic and clinical neuroscience. Progress has been hampered by the lack of theoretical frameworks explaining how a structural network of relatively rigid interareal connections can produce a diverse repertoire of functional neural dynamics. Here, we address this gap by positing that the brain's structural network architecture determines the set of accessible functional connectivity patterns according to predictions of network control theory.

View Article and Find Full Text PDF

Mindful attention is characterized by acknowledging the present experience as a transient mental event. Early stages of mindfulness practice may require greater neural effort for later efficiency. Early effort may self-regulate behavior and focalize the present, but this understanding lacks a computational explanation.

View Article and Find Full Text PDF

Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis.

View Article and Find Full Text PDF

Network control theory is increasingly used to profile the brain's energy landscape via simulations of neural dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits' energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further application.

View Article and Find Full Text PDF

Background: The waxing and waning of negative affect in daily life is normative, reflecting an adaptive capacity to respond flexibly to changing circumstances. However, understanding of the brain structure correlates of affective variability in naturalistic settings has been limited. Using network control theory, we examine facets of brain structure that may enable negative affect variability in daily life.

View Article and Find Full Text PDF

The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior.

View Article and Find Full Text PDF

The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derive personalized functional networks across 29 scales in a large sample of youths (n = 693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling reflect and strengthen a functional hierarchy of cortical organization.

View Article and Find Full Text PDF

Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance.

View Article and Find Full Text PDF

Large-scale dynamics of the brain are routinely modelled using systems of nonlinear dynamical equations that describe the evolution of population-level activity, with distinct neural populations often coupled according to an empirically measured structural connectivity matrix. This modelling approach has been used to generate insights into the neural underpinnings of spontaneous brain dynamics, as recorded with techniques such as resting state functional MRI (fMRI). In fMRI, researchers have many degrees of freedom in the way that they can process the data and recent evidence indicates that the choice of pre-processing steps can have a major effect on empirical estimates of functional connectivity.

View Article and Find Full Text PDF