Publications by authors named "Linda van der Graaf"

Antisense technology demonstrates significant potential for addressing inherited brain diseases, with over a dozen products already available and numerous others in the development pipeline. The versatility of differentiating induced pluripotent stem cells (iPSCs) into nearly all neural cell types proves invaluable for comprehending the mechanisms behind neurological diseases, replicating cellular phenotypes, and advancing the testing and development of new therapies, including antisense oligonucleotide therapeutics. While delivering antisense oligonucleotides (ASOs) to human iPSC-based neuronal models has posed challenges, this study explores various delivery methods, including lipid-based transfection, gymnotic uptake, Ca-enhanced medium (CEM)-based delivery, and electroporation, in 2D and 3D hiPSC-derived neuronal models.

View Article and Find Full Text PDF

Spinocerebellar Ataxia Type 7 (SCA7) is an autosomal dominantly inherited disorder, primarily characterized by cerebellar ataxia and visual loss. SCA7 is caused by a CAG repeat expansion in exon 3 of the ATXN7 gene. We generated human induced pluripotent stem cells (hiPSCs) from peripheral blood-derived erythroblasts from two SCA7 patients (LUMCi051-A,B and LUMCi052-A,B,C) using integration-free episomal vectors.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction.

Objectives: Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures.

Methods: SCA1 iPSCs were generated and differentiated into neuronal cultures.

View Article and Find Full Text PDF

Introduction: ADutch-type cerebral amyloid angiopathy (D-CAA) is a hereditary brain disorder caused by a point mutation in the amyloid precursor protein (APP) gene. The mutation is located within the amyloid beta (Aβ) domain of APP and leads to Aβ peptide accumulation in and around the cerebral vasculature. There lack of disease models to study the cellular and molecular pathological mechanisms of D-CAA together with the absence of a disease phenotype in vitro in overexpression cell models, as well as the limited availability of D-CAA animal models indicates the need for a D-CAA patient-derived model.

View Article and Find Full Text PDF

Dutch-type cerebral amyloid angiopathy (D-CAA) is a monogenic form of cerebral amyloid angiopathy and is inherited in an autosomal dominant manner. The disease is caused by a point mutation in exon 17 of the amyloid precursor protein () gene that leads to an amino acid substitution at codon 693. The mutation is located within the amyloid beta (Aβ) domain of APP, and leads to accumulation of toxic Aβ peptide in and around the cerebral vasculature.

View Article and Find Full Text PDF

Huntington disease (HD) is an autosomal dominant, neurodegenerative disease caused by a CAG repeat expansion within the coding sequence of the HTT gene, resulting in a highly toxic protein with an expanded polyglutamine stretch that forms typical protein aggregates throughout the brain. We generated human induced pluripotent stem cells (hiPSCs) from two HD patients using non-integrating Sendai virus (SeV). The hiPSCs display a normal karyotype, express all pluripotency markers, have the same CAG repeat expansion as the original fibroblasts and are able to differentiate into the three germ layers in vitro.

View Article and Find Full Text PDF

In severe forms of cerebral amyloid angiopathy (CAA) pathology, vascular calcification has been observed in the cerebral cortex, both in vivo on MRI and CT, and post-mortem using histopathology. However, the pathomechanisms leading to calcification of CAA-laden arteries are unknown. Therefore, we investigated the correlation between calcification of cortical arterioles and several potential modulators of vascular calcification using immunohistochemistry in a unique collection of brain material of patients with a hereditary form of CAA, namely hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D or D-CAA).

View Article and Find Full Text PDF

Hereditary Cerebral Hemorrhage with Amyloidosis-Dutch type (HCHWA-D) is an autosomal dominant hereditary disease caused by a point mutation in exon 17 of the APP gene. We generated human induced pluripotent stem cells (hiPSCs) from a symptomatic HCHWA-D patient by using non-integrating Sendai virus (SeV). The newly generated hiPSCs express all pluripotency markers, have a normal karyotype, carry the Dutch mutation, can differentiate in the three germ layers in vitro and are SeV free.

View Article and Find Full Text PDF

Background and Purpose- Previous studies of symptomatic and asymptomatic hereditary cerebral amyloid angiopathy (CAA) patients offered the possibility to study the radiological manifestations of CAA in the early stages of the disease. Recently, a striped cortex, observable as hypointense lines perpendicular to the pial surface on T-weighted 7T magnetic resonance imaging (MRI), was detected in 40% of the symptomatic hereditary CAA patients. However, the origin of these MRI contrast changes is unknown.

View Article and Find Full Text PDF

The value of iron-based MRI changes for the diagnosis and staging of Alzheimer's disease (AD) depends on an association between cortical iron accumulation and AD pathology. Therefore, this study determined the cortical distribution pattern of MRI contrast changes in cortical regions selected based on the known distribution pattern of tau pathology and investigated whether MRI contrast changes reflect the underlying AD pathology in the different lobes. T2*-weighted MRI was performed on postmortem cortical tissue of controls, late-onset AD (LOAD), and early-onset AD (EOAD) followed by histology and correlation analyses.

View Article and Find Full Text PDF

Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) caused by a point mutation resulting in an amino acid change (NP_000475.1:p.Glu693Gln) in the amyloid precursor protein (APP).

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a hereditary neurodegenerative disease caused by a CAG repeat expansion in exon 8 of the ATXN1 gene. We generated induced pluripotent stem cells (hiPSCs) from a SCA1 patient and his non-affected sister by using non-integrating Sendai Viruses (SeV). The resulting hiPSCs are SeVfree, express pluripotency markers, display a normal karyotype, retain the mutation (length of the CAG repeat expansion in the ATXN1 gene) and are able to differentiate into the three germ layers in vitro.

View Article and Find Full Text PDF

Previous MRI studies reported cortical iron accumulation in early-onset (EOAD) compared to late-onset (LOAD) Alzheimer disease patients. However, the pattern and origin of iron accumulation is poorly understood. This study investigated the histopathological correlates of MRI contrast in both EOAD and LOAD.

View Article and Find Full Text PDF

Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) pathology, caused by the E22Q mutation in the amyloid β (Aβ) peptide. Transforming growth factor β1 (TGFβ1) is a key player in vascular fibrosis and in the formation of angiopathic vessels in transgenic mice. Therefore, we investigated whether the TGFβ pathway is involved in HCHWA-D pathogenesis in human postmortem brain tissue from frontal and occipital lobes.

View Article and Find Full Text PDF

Introduction: Llama single domain antibody fragments (VHH), which can pass endothelial barriers, are being investigated for targeting amyloid plaque load in Alzheimer's disease (AD). Contrary to conventional human or murine antibodies consisting of IgG or F(ab')2 antibody fragments, VHH are able to effectively pass the blood brain barrier (BBB) in vitro. However, in earlier in vivo studies, anti-amyloid VHH showed poor BBB passage due to their short serum half-lives.

View Article and Find Full Text PDF

Background: Previously, we reported on the unexpected development of distant metastases in the subcutaneous rat pancreas CA20948 tumor model after 4.5 weeks of treatment with RAD001-only or in combination with [(177)Lu-DOTA(0),Tyr(3)]octreotate ((177)Lu-DOTATATE) (Cancer Res. 73:12-8, 2013).

View Article and Find Full Text PDF

Objective: In search of molecular imaging modalities for specific detection of inflammatory atherosclerotic plaques, we explored the potential of targeting scavenger receptor-AI (SR-AI), which is highly expressed by lesional macrophages and linked to effective internalization machinery.

Approach And Results: Ultrasmall superparamagnetic iron oxide particles were conjugated to a peptidic SR-AI ligand (0.371 mol Fe/L and 0.

View Article and Find Full Text PDF

Background: High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent.

Methods And Results: We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE(-/-) mice after injection of a contrast agent.

View Article and Find Full Text PDF

Novel bombesin (BBN) antagonists were synthesized by coupling the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) to H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (JMV594) through linkers of increasing number of (βAla)x residues (x = 1-3). Labeling with (111)In afforded the respective radiotracers in high purity and high specific activity. Bioconjugate affinity for the gastrin releasing peptide receptor (GRPR) as determined against [(125)I-Tyr(4)]BBN was high (IC50 values in the lower nanomolar range).

View Article and Find Full Text PDF

Inhibition of mTOR is commonly considered a valid target in cancer treatment, but this assertion does not address effects on the immune microenvironment that may be detrimental to cancer treatment. Here we show how administration of the mTOR inhibitor RAD001 (everolimus) results in the occurrence of distant metastasis in a rat model of pancreatic cancer. RAD001 was administered twice weekly for 4.

View Article and Find Full Text PDF

The use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of two differently sized gadolinium-based contrast agents to enhance atherosclerotic plaques in ApoE(-/-) mice was evaluated with MRI. We obtained a kinetic profile for contrast enhancement, as the literature data on optimal imaging time points is scarce, and assessed the longer-term kinetics.

View Article and Find Full Text PDF

Unlabelled: Electrical Activity and RhoA in the Embryo.

Introduction: Myocardium at the venous pole (sinus venosus) of the heart has gained clinical interest as arrhythmias can be initiated from this area. During development, sinus venosus myocardium is incorporated to the primary heart tube and expresses different markers than primary myocardium.

View Article and Find Full Text PDF

Background: Adult human epicardium-derived cells (EPDCs), transplanted into the infarcted heart, are known to improve cardiac function, mainly through paracrine protection of the surrounding tissue. We hypothesized that this effect might be further improved if these supportive EPDCs were combined with cells that could possibly supply the ischemic heart with new cardiomyocytes. Therefore, we transplanted EPDCs together with cardiomyocyte progenitor cells that can generate mature cardiomyocytes in vitro.

View Article and Find Full Text PDF

Conventional microscopic techniques, to study embryonic development, require large numbers of embryos and are invasive, making follow-up impossible. We explored the use of in vivo MRI to study embryonic development, in general, and cardiovascular development in particular, over time. Wild-type quail embryos (n = 11) were imaged at embryonic days 3, 5, 7, 9, and 11, covering the main time course of embryonic heart development.

View Article and Find Full Text PDF