Publications by authors named "Linda Roman"

A specific light trigger for activating endothelial Nitric Oxide-Synthase (eNOS) in real time would be of unique value to decipher cellular events associated with eNOS activation or to generate on demand cytotoxic levels of NO at specific sites for cancer research. We previously developed novel tools called nanotriggers (NT), which recognized constitutive NO-synthase, eNOS or neuronal NOS (nNOS), mainly via their 2' phosphate group which is also present in NADPH in its binding site. Laser excitation of NT1 bound to eNOS triggered recombinant NOS activity and released NO.

View Article and Find Full Text PDF

Phosphorylation is an important pathway for the regulation of nitric oxide synthase (NOS) at the posttranslational level. However, the molecular underpinnings of NOS regulation by phosphorylations remain unclear to date, mainly because of the problems in making a good amount of active phospho-NOS proteins. Herein, we have established a system in which recombinant rat nNOS holoprotein can be produced with site-specific incorporation of phosphoserine (pSer) at residue 1412, using a specialized bacterial host strain for pSer incorporation.

View Article and Find Full Text PDF
Article Synopsis
  • Neuronal nitric oxide synthase (nNOS) is being explored as a target for creating new treatments for neurodegenerative diseases, but existing inhibitors have issues with bioavailability and selectivity.
  • Researchers experimented with modifying 2-aminoquinolines by truncating their structure and adding hydrophilic groups to enhance their effectiveness specifically on human nNOS while reducing unwanted interactions with other proteins.
  • Their findings showed that certain modifications, particularly with benzonitriles, significantly improved both the potency and selectivity of these compounds while maintaining favorable absorption properties and minimizing off-target binding in the central nervous system.
View Article and Find Full Text PDF

Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms.

View Article and Find Full Text PDF

Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT.

View Article and Find Full Text PDF

Neuronal nitric oxide synthase (nNOS) is an important therapeutic target for the treatment of various neurodegenerative disorders. A major challenge in the design of nNOS inhibitors focuses on potency in humans and selectivity over other NOS isoforms. Here we report potent and selective human nNOS inhibitors based on the 2-aminopyridine scaffold with a central pyridine linker.

View Article and Find Full Text PDF

Excess nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is implicated in neurodegenerative disorders. As a result, inhibition of nNOS and reduction of NO levels is desirable therapeutically, but many nNOS inhibitors are poorly bioavailable. Promising members of our previously reported 2-aminoquinoline class of nNOS inhibitors, although orally bioavailable and brain-penetrant, suffer from unfavorable off-target binding to other CNS receptors, and they resemble known promiscuous binders.

View Article and Find Full Text PDF

The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation.

View Article and Find Full Text PDF

We have analyzed a recently obtained crystal structure of human neuronal nitric oxide synthase (nNOS) and then designed and synthesized several 2-aminopyridine derivatives containing a truncated side chain to avoid the hydrophobic pocket that differentiates human and rat nNOS in an attempt to explore alternative binding poses along the substrate access channel of human nNOS. Introduction of an N-methylethane-1,2-diamine side chain and conformational constraints such as benzonitrile and pyridine as the middle aromatic linker were sufficient to increase human and rat nNOS binding affinity and inducible and endothelial NOS selectivity. We found that 14b is a potent inhibitor; the binding modes with human and rat nNOS are unexpected, inducing side chain rotamer changes in Gln478 (rat) at the top of the active site.

View Article and Find Full Text PDF

Oxidation of L-arginine (L-Arg) to nitric oxide (NO) by NO synthase (NOS) takes place at the heme active site. It is of current interest to study structures of the heme species that activates O2 and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis.

View Article and Find Full Text PDF

Neuronal nitric oxide synthase (nNOS) plays a critical role in regulating cardiomyocyte function. nNOS was reported to decrease superoxide production in the myocardium by inhibiting the function of xanthine oxidoreductase. However, the effect of oxidative stress on nNOS in cardiomyocytes has not been determined.

View Article and Find Full Text PDF

Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity.

View Article and Find Full Text PDF

Selective inhibition of neuronal nitric oxide synthase (nNOS) is an important therapeutic approach to target neurodegenerative disorders. However, the majority of the nNOS inhibitors developed are arginine mimetics and, therefore, suffer from poor bioavailability. We designed a novel strategy to combine a more pharmacokinetically favorable 2-imidazolylpyrimidine head with promising structural components from previous inhibitors.

View Article and Find Full Text PDF

While the three-dimensional structures of heme- and flavin-binding domains of the NOS isoforms have been determined, the structures of the holoenzymes remained elusive. Application of electron cryo-microscopy and structural modeling of the bovine endothelial nitric oxide synthase (eNOS) holoenzyme produced detailed models of the intact holoenzyme in the presence and absence of Ca(2+)/calmodulin (CaM). These models accommodate the cross-electron transfer from the reductase in one monomer to the heme in the opposite monomer.

View Article and Find Full Text PDF

To develop potent and selective nNOS inhibitors, a new series of double-headed molecules with chiral linkers that derive from natural amino acid derivatives have been designed and synthesized. The new structures integrate a thiophenecarboximidamide head with two types of chiral linkers, presenting easy synthesis and good inhibitory properties. Inhibitor (S)-9b exhibits a potency of 14.

View Article and Find Full Text PDF

Overproduction of NO by nNOS is implicated in the pathogenesis of diverse neuronal disorders. Since NO signaling is involved in diverse physiological functions, selective inhibition of nNOS over other isoforms is essential to minimize side effects. A series of α-amino functionalized aminopyridine derivatives (3-8) were designed to probe the structure-activity relationship between ligand, heme propionate, and H4B.

View Article and Find Full Text PDF

The three important mammalian isozymes of nitric oxide synthase (NOS) are neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Inhibitors of nNOS show promise as treatments for neurodegenerative diseases. Eight easily-synthesized compounds containing either one () or two () 2-amino-4-methylpyridine groups with a chiral pyrrolidine linker were designed as selective nNOS inhibitors.

View Article and Find Full Text PDF

Caveolin-1 (Cav-1) gene inactivation interferes with caveolae formation and causes a range of cardiovascular and pulmonary complications in vivo. Recent evidence suggests that blunted Cav-1/endothelial nitric-oxide synthase (eNOS) interaction, which occurs specifically in vascular endothelial cells, is responsible for the multiple phenotypes observed in Cav-1-null animals. Under basal conditions, Cav-1 binds eNOS and inhibits nitric oxide (NO) production via the Cav-1 scaffolding domain (CAV; amino acids 82-101).

View Article and Find Full Text PDF

Since high levels of nitric oxide (NO) are implicated in neurodegenerative disorders, inhibition of the neuronal isoform of nitric oxide synthase (nNOS) and reduction of NO levels are therapeutically desirable. Nonetheless, many nNOS inhibitors mimic l-arginine and are poorly bioavailable. 2-Aminoquinoline-based scaffolds were designed with the hope that they could (a) mimic aminopyridines as potent, isoform-selective arginine isosteres and (b) possess chemical properties more conducive to oral bioavailability and CNS penetration.

View Article and Find Full Text PDF

Selective inhibitors of neuronal nitric oxide synthase (nNOS) are regarded as valuable and powerful agents with therapeutic potential for the treatment of chronic neurodegenerative pathologies and human melanoma. Here, we describe a novel hybrid strategy that combines the pharmacokinetically promising thiophene-2-carboximidamide fragment and structural features of our previously reported potent and selective aminopyridine inhibitors. Two inhibitors, 13 and 14, show low nanomolar inhibitory potency (Ki = 5 nM for nNOS) and good isoform selectivities (nNOS over eNOS [440- and 540-fold, respectively] and over iNOS [260- and 340-fold, respectively]).

View Article and Find Full Text PDF

Neuronal nitric oxide synthase μ (nNOSμ) contains 34 additional residues in an autoregulatory element compared to nNOSα. Cytochrome c and flavin reductions in the absence of calmodulin (CaM) were faster in nNOSμ than nNOSα, while rates in the presence of CaM were smaller. The magnitude of stimulation by CaM is thus notably lower in nNOSμ.

View Article and Find Full Text PDF

NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS). To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO) by cross breeding Por (lox/lox) and Dermo1 Cre mice.

View Article and Find Full Text PDF

To develop potent and selective nNOS inhibitors, new double-headed molecules with chiral linkers that derive from natural amino acids or their derivatives have been designed. The new structures contain two ether bonds, which greatly simplifies the synthesis and accelerates structure optimization. Inhibitor (R)-6b exhibits a potency of 32nM against nNOS and is 475 and 244 more selective for nNOS over eNOS and iNOS, respectively.

View Article and Find Full Text PDF

Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction.

View Article and Find Full Text PDF