Publications by authors named "Linda Overstreet Wadiche"

Many types of neurons exhibit a daily rhythm of intrinsic excitability. Here, we present a protocol for assessing circadian regulation of dentate granule cell excitability using a mouse model for conditional knockout of the molecular clock protein BMAL1. We describe steps for obtaining healthy oblique horizontal slices that contain the hippocampus and measuring intrinsic excitability and synaptic potentials by combining whole-cell patch-clamp recordings and perforant-path electric stimulation.

View Article and Find Full Text PDF

Adult-born granule cells (abGCs) exhibit a transient period of elevated synaptic plasticity that plays an important role in hippocampal function. Various mechanisms have been implicated in this critical period for enhanced plasticity, including minimal GABAergic inhibition and high intrinsic excitability conferred by T-type Ca channels. Here we assess the contribution of synaptic inhibition and intrinsic excitability to long-term potentiation (LTP) in abGCs of adult male and female mice using perforated patch recordings.

View Article and Find Full Text PDF

Precise alignment of pre- and postsynaptic elements optimizes the activation of glutamate receptors at excitatory synapses. Nonetheless, glutamate that diffuses out of the synaptic cleft can have actions at distant receptors, a mode of transmission called spillover. To uncover the extrasynaptic actions of glutamate, we localized AMPA receptors (AMPARs) mediating spillover transmission between climbing fibers and molecular layer interneurons in the cerebellar cortex.

View Article and Find Full Text PDF

The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood.

View Article and Find Full Text PDF

Neurotransmitter spillover is a form of communication not readily predicted by anatomic structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate.

View Article and Find Full Text PDF

Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases.

View Article and Find Full Text PDF

Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons. In mature neurons, PVs evoke GABA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth. Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs.

View Article and Find Full Text PDF

The dentate gyrus continually produces new neurons throughout life. Behavioral studies in rodents and network models show that new neurons contribute to normal dentate functions, but there are many unanswered questions about how the relatively small population of new neurons alters network activity. Here we discuss experimental evidence that supports multiple cellular mechanisms by which adult-born neurons contribute to circuit function.

View Article and Find Full Text PDF

The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode.

View Article and Find Full Text PDF

Sparse neural activity in the dentate gyrus is enforced by powerful networks of inhibitory GABAergic interneurons in combination with low intrinsic excitability of the principal neurons, the dentate granule cells (GCs). Although the cellular and circuit properties that dictate synaptic inhibition are well studied, less is known about mechanisms that confer low GC intrinsic excitability. Here we demonstrate that intact G protein-mediated signaling contributes to the characteristic low resting membrane potential that differentiates mature dentate GCs from CA1 pyramidal cells and developing adult-born GCs.

View Article and Find Full Text PDF

Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear.

View Article and Find Full Text PDF

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission.

View Article and Find Full Text PDF

Although the absence of the age-regulating klotho protein causes klotho-deficient mice to rapidly develop cognitive impairment and increasing klotho enhances hippocampal-dependent memory, the cellular effects of klotho that mediate hippocampal-dependent memory function are unknown. Here, we show premature aging of the klotho-deficient hippocampal neurogenic niche as evidenced by reduced numbers of neural stem cells, decreased proliferation, and impaired maturation of immature neurons. Klotho-deficient neurospheres show reduced proliferation and size that is rescued by supplementation with shed klotho protein.

View Article and Find Full Text PDF

Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons.

View Article and Find Full Text PDF

Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking.

View Article and Find Full Text PDF

Stem and progenitor cells of the developing and adult brain can be effectively identified and manipulated using reporter genes, introduced into transgenic reporter mouse lines or recombinant viruses. Such reporters rely on an ever-increasing variety of fluorescent proteins and a continuously expanding list of regulatory elements and of mouse lines engineered for cell- or time-specific recombination. An important extension of stem-cell-based genetic strategies is an opportunity to explore the properties of newly generated neurons and their contribution to synaptic plasticity.

View Article and Find Full Text PDF

Recent research into local-circuit GABAergic inhibitory interneurons of the mammalian central nervous system has provided unprecedented insight into the mechanics of neuronal circuitry and its dysfunction. Inhibitory interneurons consist of a broad array of anatomically and neurochemically diverse cell types, and this suggests that each occupies an equally diverse functional role. Although neurogliaform cells were observed by Cajal over a century ago, our understanding of the functional role of this class of interneurons is in its infancy.

View Article and Find Full Text PDF

GABAergic interneurons enforce highly sparse activity patterns in principal neurons of the dentate gyrus. In this issue of Neuron, Temprana et al. (2015) show that immature adult-born neurons largely function independently of inhibitory feedback circuits, neither receiving nor generating feedback inhibition.

View Article and Find Full Text PDF

In this issue of Neuron, Tani et al. (2014) revisit a disputed issue where biochemical and physiological data have provided conflicting results. Using a novel stimulation protocol, the authors isolate the contribution of the glutamate-glutamine cycle to excitatory synaptic transmission.

View Article and Find Full Text PDF

Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initial glutamatergic synapses as well as disynaptic GABAergic input to adult-generated dentate GCs.

View Article and Find Full Text PDF

Adult neurogenesis continually produces a small population of immature granule cells (GCs) within the dentate gyrus. The physiological properties of immature GCs distinguish them from the more numerous mature GCs and potentially enables distinct network functions. To test how the changing properties of developing GCs affect spiking behavior, we examined synaptic responses of mature and immature GCs in hippocampal slices from adult mice.

View Article and Find Full Text PDF

Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release.

View Article and Find Full Text PDF