Background: The type 3 secretion protein PcrV and Psl exopolysaccharide are promising therapeutic antibody targets against Pseudomonas aeruginosa. We examined P. aeruginosa bloodstream infection (BSI) isolates for the ability to express PcrV and Psl and evaluated corresponding patient serum for active titers to these targets.
View Article and Find Full Text PDFA novel class of bacterial type-II topoisomerase inhibitor displaying a spiropyrimidinetrione architecture fused to a benzisoxazole scaffold shows potent activity against Gram-positive and fastidious Gram-negative bacteria. Here, we describe a series of N-linked oxazolidinone substituents on the benzisoxazole that improve upon the antibacterial activity of initially described compounds of the class, show favorable PK properties, and demonstrate efficacy in an in vivo Staphylococcus aureus infection model. Inhibition of the topoisomerases DNA gyrase and topoisomerase IV from both Gram-positive and a Gram-negative organisms was demonstrated.
View Article and Find Full Text PDFThe unmet medical need for novel intervention strategies to treat Neisseria gonorrhoeae infections is significant and increasing, as rapidly emerging resistance in this pathogen is threatening to eliminate the currently available treatment options. AZD0914 is a novel bacterial gyrase inhibitor that possesses potent in vitro activities against isolates with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins, and it is currently in clinical development for the treatment of N. gonorrhoeae infections.
View Article and Find Full Text PDFAZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA.
View Article and Find Full Text PDFFor an antibacterial agent to be considered for clinical studies in nosocomial pneumonia (NP), it should be active in the presence of pulmonary surfactant. Furthermore, owing to the common practice of treating such infections with more than one antibacterial agent, it should be free of antagonistic interactions with agents of other classes. The aim of this study was to demonstrate the effect of pulmonary surfactant on the activity of ceftazidime and ceftazidime-avibactam and to determine the interaction (if any) of ceftazidime-avibactam and six antimicrobial agents common in the treatment of NP.
View Article and Find Full Text PDFThymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S.
View Article and Find Full Text PDFThymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK.
View Article and Find Full Text PDFThere is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity.
View Article and Find Full Text PDF