Publications by authors named "Linda Marban"

Background: Cardiosphere-derived cells (CDCs) ameliorate skeletal and cardiac muscle deterioration in experimental models of Duchenne muscular dystrophy. The HOPE-2 trial examined the safety and efficacy of sequential intravenous infusions of human allogeneic CDCs in late-stage Duchenne muscular dystrophy.

Methods: In this multicentre, randomised, double-blind, placebo-controlled, phase 2 trial, patients with Duchenne muscular dystrophy, aged 10 years or older with moderate upper limb impairment, were enrolled at seven centres in the USA.

View Article and Find Full Text PDF

Background: Most cell therapy trials failed to show an improvement in global left ventricular (LV) function measures after myocardial infarction (MI). Myocardial segments are heterogeneously impacted by MI. Global LV function indices are not able to detect the small treatment effects on segmental myocardial function which may have prognostic implications for cardiac events.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) isolated from cardiosphere-derived cells (CDC-EVs) are coming to light as a unique cell-free therapeutic. Because of their novelty, however, there still exist prominent gaps in knowledge regarding their therapeutic potential. Herein the therapeutic potential of CDC-EVs in a rat model of acute traumatic coagulopathy induced by multiple injuries and hemorrhagic shock is outlined.

View Article and Find Full Text PDF

Cell therapy limits ischemic injury following myocardial infarction (MI) by preventing cell death, modulating the immune response, and promoting tissue regeneration. The therapeutic efficacy of cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs) is associated with extracellular vesicle (EV) release. Prior head-to-head comparisons have shown CDCs to be more effective than MSCs in MI models.

View Article and Find Full Text PDF

Primary cell therapy continues to face significant hurdles to therapeutic translation including the inherent variations that exist from donor to donor, batch to batch, and scale-up driven modifications to the manufacturing process. Cardiosphere-derived cells (CDCs) are stromal/progenitor cells with clinically demonstrated tissue reparative capabilities. Mechanistic investigations have identified canonical Wnt/β-catenin signaling as a therapeutic potency marker, and THY1 (CD90) expression as inversely correlated with potency.

View Article and Find Full Text PDF

Objectives: Cardiosphere-derived cell (CDC) transplantation has been shown to attenuate right ventricular (RV) dysfunction in patients with hypoplastic left heart syndrome. However, live cell transplantation requires complex handling protocols that may limit its use. Exosomes are protein and nucleic acid-containing nanovesicles secreted by many cell types, including stem cells, which have been shown to exert a cardioprotective effect comparable with whole cells following myocardial injury.

View Article and Find Full Text PDF

Aims: Cardiosphere-derived cells (CDCs) are cardiac progenitor cells that exhibit disease-modifying bioactivity in various models of cardiomyopathy and in previous clinical studies of acute myocardial infarction (MI), dilated cardiomyopathy, and Duchenne muscular dystrophy. The aim of the study was to assess the safety and efficacy of intracoronary administration of allogeneic CDCs in the multicentre, randomized, double-blinded, placebo-controlled, intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR) trial.

Methods And Results: We enrolled patients 4 weeks to 12 months after MI, with left ventricular ejection fraction (LVEF) ≤45% and LV scar size ≥15% of LV mass by magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

There are no definitive therapies for patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Therefore, new therapeutic strategies are needed to improve clinical outcomes, particularly in patients with severe disease. This case series explores the safety and effectiveness of intravenous allogeneic cardiosphere-derived cells (CDCs), formulated as CAP-1002, in critically ill patients with confirmed coronavirus disease 2019 (COVID-19).

View Article and Find Full Text PDF

Aims: The DYNAMIC trial assessed the safety and explored the efficacy of multivessel intracoronary infusion of allogeneic cardiosphere-derived cells (CDCs) in patients with heart failure and reduced ejection fraction (HFrEF). Here we report the results of the DYNAMIC trial.

Methods And Results: We enrolled 14 patients with EF ≤35% and NYHA Class III-IV despite maximal medical and device-based therapy in this single-centre, open-label trial.

View Article and Find Full Text PDF

Cardiosphere-derived cells are therapeutic candidates with disease-modifying bioactivity, but their variable potency has complicated their clinical translation. Transcriptomic analyses of cardiosphere-derived cells from human donors have revealed that their therapeutic potency correlates with Wnt/β-catenin signalling and with β-catenin protein levels. Here, we show that skin fibroblasts engineered to overexpress β-catenin and the transcription factor Gata4 become immortal and therapeutically potent.

View Article and Find Full Text PDF
Article Synopsis
  • The HOPE-Duchenne trial assessed the use of intracoronary allogeneic cardiosphere-derived cells (CAP-1002) in patients with Duchenne muscular dystrophy (DMD), focusing on its feasibility, safety, and effectiveness.
  • The study involved 25 patients over 12 months, comparing a group receiving CAP-1002 to a control group receiving usual care, with results indicating improvements in cardiac structure and muscle function for those receiving the treatment.
  • The findings suggest that CAP-1002 is safe and shows potential benefits for cardiac and skeletal muscle function in DMD, indicating that further research in this area is necessary.
View Article and Find Full Text PDF

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is one of the most sensitive, economical and widely used methods for evaluating gene expression. However, the utility of this method continues to be undermined by a number of challenges including normalization using appropriate reference genes. The need to develop tailored and effective strategies is further underscored by the burgeoning field of extracellular vesicle (EV) biology.

View Article and Find Full Text PDF

Cardiosphere-derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC-EVs), including exosomes, which alter macrophage polarization. We questioned whether short non-coding RNA species of unknown function within CDC-EVs contribute to cardioprotection. The most abundant RNA species in CDC-EVs is a Y RNA fragment (EV-YF1); its relative abundance in CDC-EVs correlates with CDC potency Fluorescently labeled EV-YF1 is actively transferred from CDCs to target macrophages via CDC-EVs.

View Article and Find Full Text PDF

Aims: Naturally secreted nanovesicles known as exosomes are required for the regenerative effects of cardiosphere-derived cells (CDCs), and exosomes mimic the benefits of CDCs in rodents. Nevertheless, exosomes have not been studied in a translationally realistic large-animal model. We sought to optimize delivery and assess the efficacy of CDC-secreted exosomes in pig models of acute (AMI) and convalescent myocardial infarction (CMI).

View Article and Find Full Text PDF

Autologous cardiosphere-derived cells (CDCs) were the first therapeutic modality to demonstrate myocardial regeneration with a decrease in scar size and an increase in viable, functional tissue. Widespread applicability of autologous CDC therapy is limited by the need for patient-specific myocardial biopsy, cell processing, and quality control, resulting in delays to therapy and inherent logistical and economic constraints. Preclinical data had demonstrated equivalent efficiency of allogeneic to autologous CDCs.

View Article and Find Full Text PDF

Background: A single dose of allogeneic cardiosphere-derived cells (CDCs) improves cardiac function and reduces scarring, and increases viable myocardium in the infarcted rat and pig heart without eliciting a detrimental immune response. Clinical trials using single doses of allogeneic human CDCs are underway. It is unknown whether repeat dosing confers additional benefit or if it elicits an immune response.

View Article and Find Full Text PDF

Background: Infusion of allogeneic cardiosphere-derived cells (allo-CDCs) postreperfusion elicits cardioprotective cellular postconditioning in pigs with acute myocardial infarction. However, the long-term effects of allo-CDCs have not been assessed. We performed a placebo-controlled pivotal study for long-term evaluation, as well as shorter-term mechanistic studies.

View Article and Find Full Text PDF

Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes.

View Article and Find Full Text PDF

Background: Preclinical studies in rodents and pigs indicate that the self-assembling microtissues known as cardiospheres may be more effective than dispersed cardiosphere-derived cells. However, the more desirable intracoronary route has been assumed to be unsafe for cardiosphere delivery: Cardiospheres are large (30-150 μm), raising concerns about likely microembolization. We questioned these negative assumptions by evaluating the safety and efficacy of optimized intracoronary delivery of cardiospheres in a porcine model of convalescent myocardial infarction.

View Article and Find Full Text PDF

Background: Intracoronary delivery of cardiosphere-derived cells (CDCs) has been demonstrated to be safe and effective in porcine and human chronic myocardial infarction. However, intracoronary delivery of CDCs after reperfusion in acute myocardial infarction has never been assessed in a clinically-relevant large animal model. We tested CDCs as adjunctive therapy to reperfusion in a porcine model of myocardial infarction.

View Article and Find Full Text PDF

Background: Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI), but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy.

Methods And Results: We studied a total of 89 minipigs; 63 completed the specified protocols.

View Article and Find Full Text PDF

Objective: We sought to understand the cellular and tissue-level changes underlying the attenuation of adverse remodeling by cardiosphere transplantation in acute myocardial infarction (MI).

Background: Cardiospheres (CSps) are heart-derived multicellular clusters rich in stemness and capable of multilineage differentiation. Post-MI CSp transplantation improves left ventricular (LV) function and attenuates remodeling in both small and large animal studies.

View Article and Find Full Text PDF

Objectives: This study sought to compare the regenerative potency of cells derived from healthy and diseased human hearts.

Background: Results from pre-clinical studies and the CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial support the notion that cardiosphere-derived cells (CDCs) from normal and recently infarcted hearts are capable of regenerating healthy heart tissue after myocardial infarction (MI). It is unknown whether CDCs derived from advanced heart failure (HF) patients retain the same regenerative potency.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) in the CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction (CADUCEUS) trial revealed that cardiosphere-derived cells (CDCs) decrease scar size and increase viable myocardium after myocardial infarction (MI), but MRI has not been validated as an index of regeneration after cell therapy. We tested the validity of contrast-enhanced MRI in quantifying scarred and viable myocardium after cell therapy in a porcine model of convalescent MI.

Methods And Results: Yucatan minipigs underwent induction of MI and 2-3 weeks later were randomized to receive intracoronary infusion of 12.

View Article and Find Full Text PDF

Objectives: This study sought to report full 1-year results, detailed magnetic resonance imaging analysis, and determinants of efficacy in the prospective, randomized, controlled CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial.

Background: Cardiosphere-derived cells (CDCs) exerted regenerative effects at 6 months in the CADUCEUS trial. Complete results at the final 1-year endpoint are unknown.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1d07u112qqu7rvu560lop3rnnaljc54i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once