Publications by authors named "Linda M Starnes"

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells.

View Article and Find Full Text PDF

DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood.

View Article and Find Full Text PDF

Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks.

View Article and Find Full Text PDF

Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear.

View Article and Find Full Text PDF

The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs).

View Article and Find Full Text PDF

Epigenetic modifications regulate developmental genes involved in stem cell identity and lineage choice. NFI-A is a posttranscriptional microRNA-223 (miR-223) target directing human hematopoietic progenitor lineage decision: NFI-A induction or silencing boosts erythropoiesis or granulopoiesis, respectively. Here we show that NFI-A promoter silencing, which allows granulopoiesis, is guaranteed by epigenetic events, including the resolution of opposing chromatin "bivalent domains," hypermethylation, recruitment of polycomb (PcG)-RNAi complexes, and miR-223 promoter targeting activity.

View Article and Find Full Text PDF

In mammals, hematopoiesis is the continuous formation of all blood cell types from a limited pool of hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow (BM). Hierarchical specification of hematopoietic lineages, as well as stem cell kinetics, are dynamic processes influenced by an intricate network of soluble growth factors and membrane-anchored signals orchestrated by the microenvironment (extrinsic signals), coupled with cell-autonomous changes in gene expression (intrinsic signals). At the molecular level, during the early steps of hematopoietic differentiation from the HSC, the chromatin progressively becomes more accessible at genes poised for expression, rapidly followed by an increased expression of lineage-associated genes with concomitant repression of alternative-lineage genes, resulting in commitment and differentiation.

View Article and Find Full Text PDF

It is generally conceded that selective combinations of transcription factors determine hematopoietic lineage commitment and differentiation. Here we show that in normal human hematopoiesis the transcription factor nuclear factor I-A (NFI-A) exhibits a marked lineage-specific expression pattern: it is upmodulated in the erythroid (E) lineage while fully suppressed in the granulopoietic (G) series. In unilineage E culture of hematopoietic progenitor cells (HPCs), NFI-A overexpression or knockdown accelerates or blocks erythropoiesis, respectively: notably, NFI-A overexpression restores E differentiation in the presence of low or minimal erythropoietin stimulus.

View Article and Find Full Text PDF

Hematopoietic transcription factors are involved in chromosomal translocations, which generate fusion proteins contributing to leukemia pathogenesis. Analysis of patient's primary leukemia blasts revealed that those carrying the t(8;21) generating AML1/ETO, the most common acute myeloid leukemia-associated fusion protein, display low levels of a microRNA-223 (miR-223), a regulator of myelopoiesis. Here, we show that miR-223 is a direct transcriptional target of AML1/ETO.

View Article and Find Full Text PDF