Alzheimer's disease is characterized by cognitive decline, neuronal degeneration, and the accumulation of amyloid-beta (Aβ). Although, the neurotoxic Aβ peptide is widely believed to trigger neuronal dysfunction and degeneration in Alzheimer's disease, the mechanism by which this occurs is poorly defined. Here we describe a novel, Aβ-triggered apoptotic pathway in which Aβ treatment leads to the upregulation of G-protein activated inwardly rectifying potassium (GIRK/Kir3) channels, causing potassium efflux from neurons and Aβ-mediated apoptosis.
View Article and Find Full Text PDFThe lipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P 2), synthesised by PIKfyve, regulates a number of intracellular membrane trafficking pathways. Genetic alteration of the PIKfyve complex, leading to even a mild reduction in PtdIns(3,5)P 2, results in marked neurodegeneration via an uncharacterised mechanism. In the present study we have shown that selectively inhibiting PIKfyve activity, using YM-201636, significantly reduces the survival of primary mouse hippocampal neurons in culture.
View Article and Find Full Text PDFThe pan neurotrophin receptor p75(NTR) signals programmed cell death both during nervous system development and after neural trauma and disease in the adult. However, the molecular pathways by which death is mediated remain poorly understood. Here, we show that this cell death is initiated by activation of G-protein-coupled inwardly rectifying potassium (GIRK/Kir3) channels and a consequent potassium efflux.
View Article and Find Full Text PDFIt has recently been shown that the p75 neurotrophin receptor (p75(NTR)), which is known to mediate neural cell death during development of the nervous system and in a range of adult neurodegenerative conditions, undergoes a regulated process of cell surface receptor cleavage, regulated intramembrane proteolysis (RIP). Here we show that neuronal death signaling occurs only following extracellular metalloprotease cleavage of p75(NTR) and palmitoylation of the resultant C-terminal fragment, causing its translocation to cholesterol-rich domains of the plasma membrane. Furthermore, death signaling is promoted by inhibition of intracellular gamma-secretase cleavage, a process which also occurs within the cholesterol-rich domains.
View Article and Find Full Text PDF