Transcriptional responses to four weak organic acids (benzoate, sorbate, acetate and propionate) were investigated in anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. To enable quantitative comparison of the responses to the acids, their concentrations were chosen such that they caused a 50% decrease of the biomass yield on glucose. The concentration of each acid required to achieve this yield was negatively correlated with membrane affinity.
View Article and Find Full Text PDFIn nature, H2- and CO2-utilizing methanogenic archaea have to couple the processes of methanogenesis and autotrophic growth under highly variable conditions with respect to the supply and concentration of their energy source, hydrogen. To study the hydrogen-dependent coupling between methanogenesis and growth, Methanothermobacter thermautotrophicus was cultured in a fed-batch fermentor and in a chemostat under different 80% H(2)-20% CO2 gassing regimens while we continuously monitored the dissolved hydrogen partial pressures (pH2). In the fed-batch system, in which the conditions continuously changed the uptake rates by the growing biomass, the organism displayed a complex and yet defined growth behavior, comprising the consecutive lag, exponential, and linear growth phases.
View Article and Find Full Text PDFCoenzyme F420 is the central low-redox-potential electron carrier in methanogenic metabolism. The coenzyme is reduced under hydrogen by the action of F420-dependent hydrogenase. The standard free-energy change at pH 7 of F420 reduction was determined to be -15 kJ mol(-1), irrespective of the temperature (25-65 degrees C).
View Article and Find Full Text PDFThe synthesis of formyl-methanofuran and the reduction of the heterodisulfide (CoM-S-S-CoB) of coenzyme M (HS-CoM) and coenzyme B (HS-CoB) are two crucial, H2-dependent reactions in the energy metabolism of methanogenic archaea. The bioenergetics of the reactions in vivo were studied in chemostat cultures and in cell suspensions of Methanothermobacter thermautotrophicus metabolizing at defined dissolved hydrogen partial pressures ( pH2). Formyl-methanofuran synthesis is an endergonic reaction (DeltaG degrees ' = +16 kJ.
View Article and Find Full Text PDF