Publications by authors named "Linda Lucero"

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and β2 subunits (α7β2-nAChR subtype). Basal forebrain cholinergic neurons express α7β2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-β associated with early Alzheimer's disease.

View Article and Find Full Text PDF

Modifications of the cationic head and the ethylene linker of 2-(triethylammonium)ethyl ether of 4-stilbenol (MG624) have been proved to produce selective α9*-nAChR antagonism devoid of any effect on the α7-subtype. Here, single structural changes at the styryl portion of MG624 lead to prevailing α7-nAChR antagonism without abolishing α9*-nAChR antagonism. Nevertheless, rigidification of the styryl into an aromatic bicycle, better if including a H-bond donor NH, such as 5-indolyl (), resulted in higher and more selective α7-nAChR affinity.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors containing α9 subunits (α9*-nAChRs) are potential druggable targets arousing great interest for pain treatment alternative to opioids. Nonpeptidic small molecules selectively acting as α9*-nAChRs antagonists still remain an unattained goal. Here, through modifications of the cationic head and the ethylene linker, we have converted the 2-triethylammonium ethyl ether of 4-stilbenol (MG624), a well-known α7- and α9*-nAChRs antagonist, into some selective antagonists of human α9*-nAChR.

View Article and Find Full Text PDF

Purpose: Evidence-based models of cancer survivorship care are lacking. Such models should take into account the perspectives of all stakeholders. The purpose of this integrative review is to examine the current state of the literature on cancer survivorship care from the cancer survivor, the oncology care team, and the primary care team perspectives.

View Article and Find Full Text PDF

Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(-)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(-)α4 site with lower agonist affinity than the α4(+)/(-)β2 sites.

View Article and Find Full Text PDF

Ligands that selectively inhibit human α3β2 and α6β2 nicotinic acetylcholine receptor (nAChRs) and not the closely related α3β4 and α6β4 subtypes are lacking. Current α-conotoxins (α-Ctxs) that discriminate among these nAChR subtypes in rat fail to discriminate among the human receptor homologs. In this study, we describe the development of α-Ctx LvIA(N9R,V10A) that is 3000-fold more potent on oocyte-expressed human α3β2 than α3β4 and 165-fold more potent on human α6/α3β2β3 than α6/α3β4 nAChRs.

View Article and Find Full Text PDF

Selected nicotinic agonists were used to activate and desensitize high-sensitivity (HS) (α4)2(β2)3) or low-sensitivity (LS) (α4)3(β2)2) isoforms of human α4β2-nicotinic acetylcholine receptors (nAChRs). Function was assessed using (86)Rb(+) efflux in a stably transfected SH-EP1-hα4β2 human epithelial cell line, and two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing concatenated pentameric HS or LS α4β2-nAChR constructs (HSP and LSP). Unlike previously studied agonists, desensitization by the highly selective agonists A-85380 [3-(2(S)-azetidinylmethoxy)pyridine] and sazetidine-A (Saz-A) preferentially reduced α4β2-nAChR HS-phase versus LS-phase responses.

View Article and Find Full Text PDF

The potential for nicotinic ligands with affinity for the α4β2 or α7 subtypes to treat such diverse diseases as nicotine addiction, neuropathic pain, and neurodegenerative and cognitive disorders has been exhibited clinically for several compounds while preclinical activity in relevant in vivo models has been demonstrated for many more. For several therapeutic programs, we sought nicotinic ligands with various combinations of affinity and function across both subtypes, with an emphasis on dual α4β2-α7 ligands, to explore the possibility of synergistic effects. We report here the structure-activity relationships (SAR) for a novel series of 7-heteroaryl-3-azabicyclo[3.

View Article and Find Full Text PDF

Genome-wide studies have strongly associated a non-synonymous polymorphism (rs16969968) that changes the 398th amino acid in the nAChR α5 subunit from aspartic acid to asparagine (D398N), with greater risk for increased nicotine consumption. We have used a pentameric concatemer approach to express defined and consistent populations of α3β4α5 nAChR in Xenopus oocytes. α5(Asn-398; risk) variant incorporation reduces ACh-evoked function compared with inclusion of the common α5(Asp-398) variant without altering agonist or antagonist potencies.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunits are thought to assemble as homomers. alpha7-nAChR function has been implicated in learning and memory, and alterations of alpha7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons.

View Article and Find Full Text PDF

Dopaminergic (DAergic) neuronal activity in the ventral tegmental area (VTA) is thought to contribute generally to pleasure, reward, and drug reinforcement and has been implicated in nicotine dependence. nAChRs expressed in the VTA exhibit diverse subunit compositions, but the functional and pharmacological properties are largely unknown. Here, using patch-clamp recordings in single DAergic neurons freshly dissociated from rat VTA, we clarified three functional subtypes of nAChRs (termed ID, IID and IIID receptors) based on whole-cell current kinetics and pharmacology.

View Article and Find Full Text PDF

Dopamine (DA) neurons located in the mammalian midbrain have been generally implicated in reward and drug reinforcement and more specifically in nicotine dependence. However, roles played by nicotinic acetylcholine receptors, including those composed of alpha7-subunits [alpha7-nicotinic acetylcholine receptors (nAChRs)], in modulation of DA signaling and in nicotine dependence are not clearly understood. Although midbrain slice recording has been used previously to identify functional alpha7-nAChRs, these preparations are not optimally designed for extremely rapid and reproducible drug application, and rapidly desensitized, alpha7-nAChR-mediated currents may have been underestimated or not detected.

View Article and Find Full Text PDF

Studies were initiated to identify nicotinic acetylcholine receptor (nAChR) subunits and subtypes expressed in the developing immune system and cell types on which nAChR are expressed. Reported here are reverse transcription-polymerase chain reactions (RT-PCR) studies of nAChR alpha2-alpha7 and beta2-beta4 subunit gene expression using fetal or neonatal regular or scid/scid C57BL/6 mouse thymus. Findings are augmented with studies of murine fetal thymic organ cultures (FOTC) and of human peripheral lymphocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkikovli4kb098sh07uj69i7folgrmoic): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once