Publications by authors named "Linda L Lee"

Pericytes (PCs)-mural cells that envelop endothelial cells (ECs) of microvessels-regulate tissue-specific vasculature development as well as maturation and maintenance of endothelial barrier integrity. However, little is known about their tissue-specific function in the heart. Specifically, the mechanism by which cardiac PCs constrict coronary capillaries remains undetermined.

View Article and Find Full Text PDF

Pericytes, perivascular cells of microvessels and capillaries, are known to play a part in angiogenesis, vessel stabilization, and endothelial barrier integrity. However, their tissue-specific functions in the heart are not well understood. Moreover, there is currently no protocol utilizing readily accessible materials to isolate and purify pericytes of cardiac origin.

View Article and Find Full Text PDF

Mural cells known as pericytes envelop the endothelial layer of microvessels throughout the body and have been described to have tissue-specific functions. Cardiac pericytes are abundantly found in the heart, but they are relatively understudied. Currently, their importance is emerging in cardiovascular homeostasis and dysfunction due to their pleiotropism.

View Article and Find Full Text PDF

Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze.

View Article and Find Full Text PDF

Elevation of blood triglycerides, primarily as triglyceride-rich lipoproteins (TGRL), has been linked to cerebrovascular inflammation, vascular dementia, and Alzheimer's disease (AD). Brain microvascular endothelial cells and astrocytes, two cell components of the neurovascular unit, participate in controlling blood-brain barrier (BBB) permeability and regulating neurovascular unit homeostasis. Our studies showed that infusion of high physiological concentrations of TGRL lipolysis products (TGRL + lipoprotein lipase) activate and injure brain endothelial cells and transiently increase the BBB transfer coefficient ( = permeability × surface area/volume) in vivo.

View Article and Find Full Text PDF

Na(+)-K(+)-ATPase (NKA) establishes the transmembrane [Na(+)] gradient in cells. In heart, phospholemman (PLM) inhibits NKA activity by reducing its apparent Na(+) affinity, an effect that is relieved by PLM phosphorylation. The NKA crystal structure suggests regions of PLM-NKA interaction, but the sites important for functional effects in live cells are not known.

View Article and Find Full Text PDF