Background: Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed.
View Article and Find Full Text PDFA number of direct thrombin inhibitors are successfully used clinically and experimentally as novel antithrombotics and specific anticoagulants. They are also used as anticoagulants in certain blood collection tubes for the analysis of platelet function. A series of platelet function tests have emerged to measure adequate responses to antiplatelet therapy.
View Article and Find Full Text PDFBackground: Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering.
View Article and Find Full Text PDF